22 resultados para REVERSE-OSMOSIS MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation for obtaining the Master degree in Membrane Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia (FCT-MCTES) under the grant SFRH/BD/69306/2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse Mortgage é um tipo de produto financeiro já comercializado em vários países (EUA, Reino Unido, Austrália, Espanha, etc.) mas que não teve ainda visibilidade em Portugal. Destina-se a pessoas com mais de 65 anos, com habitação própria e livres de encargos com a mesma, que pretendam obter um rendimento extra, dando a sua casa como garantia. Na contratação de uma Reverse Mortgage, os proprietários podem receber um montante inicial e/ou uma renda até ao final das suas vidas, mantendo o usufruto da habitação. No momento da morte, o valor da venda do imóvel é utilizado para pagar o empréstimo contraído. Assim, Reverse Mortgage permite reestabelecer ou reforçar a autonomia financeira de pessoas que, durante a sua vida activa, constituíram património mas que, por algum motivo, perderam poder económico ou se encontram actualmente com dificuldades financeiras e que não estão, no entanto, dispostas a desfazer-se da sua habitação para fazer face aos seus compromissos. Nesta dissertação pretende estudar-se a possibilidade de implementação em Portugal desta solução de hipoteca e analisar do ponto de vista actuarial as diferentes variáveis associadas a este produto, nomeadamente os montantes a receber pelo mutuário.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)