28 resultados para Metal recovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1185–1195 DOI 10.1007/s00775-008-0414-3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aims to delineate recovery strategies for a Portuguese Bank, as a way to increase its preparedness towards unexpected disruptive events, thus avoiding an operational crisis escalation. For this purpose, Business Continuity material was studied, a risk assessment performed, a business impact analysis executed and new strategic framework for selecting strategies adopted. In the end, a set of recovery strategies were chosen that better represented the Bank’s appetite for risk, and recommendations given for future improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural disasters are events that cause general and widespread destruction of the built environment and are becoming increasingly recurrent. They are a product of vulnerability and community exposure to natural hazards, generating a multitude of social, economic and cultural issues of which the loss of housing and the subsequent need for shelter is one of its major consequences. Nowadays, numerous factors contribute to increased vulnerability and exposure to natural disasters such as climate change with its impacts felt across the globe and which is currently seen as a worldwide threat to the built environment. The abandonment of disaster-affected areas can also push populations to regions where natural hazards are felt more severely. Although several actors in the post-disaster scenario provide for shelter needs and recovery programs, housing is often inadequate and unable to resist the effects of future natural hazards. Resilient housing is commonly not addressed due to the urgency in sheltering affected populations. However, by neglecting risks of exposure in construction, houses become vulnerable and are likely to be damaged or destroyed in future natural hazard events. That being said it becomes fundamental to include resilience criteria, when it comes to housing, which in turn will allow new houses to better withstand the passage of time and natural disasters, in the safest way possible. This master thesis is intended to provide guiding principles to take towards housing recovery after natural disasters, particularly in the form of flood resilient construction, considering floods are responsible for the largest number of natural disasters. To this purpose, the main structures that house affected populations were identified and analyzed in depth. After assessing the risks and damages that flood events can cause in housing, a methodology was proposed for flood resilient housing models, in which there were identified key criteria that housing should meet. The same methodology is based in the US Federal Emergency Management Agency requirements and recommendations in accordance to specific flood zones. Finally, a case study in Maldives – one of the most vulnerable countries to sea level rise resulting from climate change – has been analyzed in light of housing recovery in a post-disaster induced scenario. This analysis was carried out by using the proposed methodology with the intent of assessing the resilience of the newly built housing to floods in the aftermath of the 2004 Indian Ocean Tsunami.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) is becoming a scarce element due to the decreasing availability of primary sources. Therefore, recover P from secondary sources, e.g. waste streams, have become extremely important. Sewage sludge ash (SSA) is a reliable secondary source of P. The use of SSAs as a direct fertilizer has very restricted legislation due to the presence of inorganic contaminants. Furthermore, the P present in SSAs is not in a plant-available form. The electrodialytic (ED) process is one of the methods under development to recover P and simultaneously remove heavy metals. The present work aimed to optimize the P recovery through a 2 compartment electrodialytic cell. The research was divided in three independent phases. In the first phase, ED experiments were carried out for two SSAs from different seasons, varying the duration of the ED process (2, 4, 6 and 9 days). During the ED treatment the SSA was suspended in distilled water in the anolyte, which was separated from the catholyte by a cation exchange membrane. From both ashes 90% of P was successfully extracted after 6 days of treatment. Regarding the heavy metals removal, one of the SSAs had a better removal than the other. Therefore, it was possible to conclude that SSAs from different seasons can be submitted to ED process under the same parameters. In the second phase, the two SSAs were exposed to humidity and air prior to ED, in order to carbonate them. Although this procedure was not successful, ED experiments were carried out varying the duration of the treatment (2 and 6 days) and the period of air exposure that SSAs were submitted to (7, 14 and 30 days). After 6 days of treatment and 30 days of air exposure, 90% of phosphorus was successfully extracted from both ashes. No differences were identified between carbonated and non-carbonated SSAs. Thus, SSAs that were exposed to the air and humidity, e.g. SSAs stored for 30 days in an open deposit, can be treated under the same parameters as the SSAs directly collected from the incineration process. In the third phase, ED experiments were carried out during 6 days varying the stirring time (0, 1, 2 and 4 h/day) in order to investigate if energy can be saved on the stirring process. After 6 days of treatment and 4 h/day stirring, 80% and 90% of P was successfully extracted from SSA-A and SSA-B, respectively. This value is very similar to the one obtained for 6 days of treatment stirring 24 h/day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasi two-dimensional electron gas (q2DEG) hosted in the interface of an epitaxially grown lanthanum aluminate (LaAlO3) thin film with a TiO2-termi-nated strontium titanate (SrTiO3) substrate (001) has been massively studied in the last few years. The confinement of mobile electrons to within a few nanome-ters from the interface, superconductive behavior at low temperatures and elec-tron mobility exceeding 1000 cm2/(V.s) make this system an interesting candi-date to explore the physics of spin injection and transport. However, due to the critical thickness for conduction of 4 unit cells (uc) of LaAlO3, a high tunneling resistance hampers electrical access to the q2DEG, preventing proper injection of spin polarized current. Recently, our group found that depositing a thin overlayer of Co on LaAlO3 reduces the critical thickness, enabling conduction with only 1 uc of LaAlO3. Two scenarios arise to explain this phenomenon: a pinning of the Fermi level in the metal, inducing charge transfer in the SrTiO3; the creation of oxygen vacancies at the interface between LaAlO3 and the metal, leading to an n-type doping of the SrTiO3. In this dissertation, we will report on magnetotransport of metal/LaAlO3/SrTiO3 (metal: Ti, Ta, Co, Py, Au, Pt, Pd) heterostructures with 2 uc of LaAlO3 studied at low temperatures (2 K) and high magnetic fields (9 T). We have analyzed the transport properties of the gas, namely, the carrier concen-tration, mobility and magnetotransport regime and we will discuss the results in the light of the two scenarios mentioned above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical, numerical and experimental models have been developed over time to try to characterize and understand the metal cutting process by chip removal. A true knowledge of the cutting process by chip removal is required by the increasing production, by the quality requirements of the product and by the reduced production time, in the industries in which it is employed. In this thesis an experimental setup is developed to evaluate the forces and the temperature distribution in the tool according to the orthogonal cutting model conditions, in order to evaluate its performance and its possible adoption in future works. The experimental setup is developed in a CNC lathe and uses an orthogonal cutting configuration, in which thin discs fixed onto a mandrel are cut by the cutting insert. In this experimental setup, the forces are measured by a piezoelectric dynamometer while temperatures are measured by thermocouples placed juxtaposed to the side face of the cutting insert. Three different solutions are implemented and evaluated for the thermocouples attachment in the cutting insert: thermocouples embedded in thermal paste, thermocouples embedded in copper plate and thermocouples brazed in the cutting insert. From the tests performed in the experimental setup it is concluded that the adopted forces measurement technique shows a good performance. Regarding to the adopted temperatures measurement techniques, only the thermocouples brazed in the cutting insert solution shows a good performance for temperature measurement. The remaining solutions show contact problems between the thermocouple and the side face of the cutting insert, especially when the vibration phenomenon intensifies during the cut. It is concluded that the experimental setup does not present a sufficiently robust and reliable performance, and that it can only be used in future work after making improvements in the assembly of the thermocouples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.