27 resultados para Schwartz values theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1989, five parliamentary elections have been the stage for the foundation and demise of political parties aspiring to govern the new democratic Polish state. The demise of the AWS before the 2001 elections after ten years of attempts to create a centre-right core party resulted in a new splintering of the right-wing, and the centre-right became again devoid of a pivotal formation. While Eurosceptic parties in average gain 8 percent of the vote, in the 2001 Polish parliamentary elections Eurosceptic parties gained around 20 percent of the vote. In Poland right-wing parties show an unusual propensity for Euroscepticism. The persistence and increased importance of nationalism in Poland, which has prevented the development of a strong Christian democratic party, effectively explains the levels of Euroscepticism on the right. After the autumn 2005 parliamentary elections the national conservative party, Law and Justice, formed a governing coalition with the national Catholic League of Polish Families, creating one of the first Eurosceptic governments. Although this work does not intend to provide a theorisation of party systems development, it shows that the context of European integration fostered nationalists’ divisiveness of, and provoked the splitting of the right the unusual propensity of parties for Euroscepticism makes Poland a paradigmatic case of the kind of conflicts over European integration emerging in Central and Eastern European party systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Doutoramento em Informática, como requisito parcial para obtenção do grau de Doutor em Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for degree of Master in Statistics and Information Management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etnográfica, 15 (2): 313-336

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO:Introdução: Reviu-se o conhecimento epidemiológico, fisiopatológico e clínico atual sobre a doença coronária, da sua génese até ao evento agudo, o Enfarte Agudo do Miocárdio (EAM). Valorizou-se, em especial, a teoria inflamatória da aterosclerose, que foi objeto de grandes desenvolvimentos na última década. Marcadores de instabilidade da placa aterosclerótica coronária: Aprofundou-se o conhecimento da placa aterosclerótica coronária instável. Descreveram-se detalhadamente os biomarcadores clínicos e laboratoriais associados à instabilidade da placa, com particular ênfase nos mecanismos inflamatórios. Objetivos:Estão divididos em dois pontos fundamentais:(1) Estudar em doentes com EAM a relação existente entre as moléculas inflamatórias: Interleucina-6 (IL-6), Fator de Necrose Tumoral-α (TNF-α) e Metaloproteinase de Matriz-3 (MMP3), não usados em contexto clínico, com um marcador inflamatório já em uso clínico: a Proteína C-Reativa ultrassensível (hs-CRP). Avaliar a relação de todas as moléculas inflamatórias com um biomarcador de lesão miocárdica: a Troponina Cardíaca I (cTnI). (2) Avaliar, no mesmo contexto de EAM, a Resposta de Fase Aguda (RFA) . Pretende-se demonstrar o impacto deste fenómeno, com repercussão clínica generalizada, no perfil lipídico e nos biomarcadores inflamatórios dos doentes. Métodos:(1) Estudo observacional prospetivo de doentes admitidos consecutivamente por EAM (grupo EAM) numa única unidade coronária, após exclusão de trauma ou infeção. Doseamento no sangue periférico, na admissão, de IL-6, TNF-α, MMP3, hs-CRP e cTnI. Este último biomarcador foi valorizado também nos valores séricos obtidos 6-9 horas depois. Procedeu-se a correlação linear (coeficiente de Pearson, de Rho-Spearman e determinação do R2) entre os 3 marcadores estudados com os valores de hs-CRP e de cTnI (valores da admissão e 6 a 9 horas após). Efetuou-se o cálculo dos coeficientes de regressão linear múltipla entre cTnI da admissão e cTnI 6-9h após, com o conjunto dos fatores inflamatórios estudados. (2) Estudo caso-controlo entre o grupo EAM e uma população aleatória de doentes seguidos em consulta de cardiologia, após exclusão de eventos cardiovasculares de qualquer território (grupo controlo) e também sem infeção ou trauma. Foram doseados os mesmos marcadores inflamatórios no grupo controlo e no grupo EAM. Nos dois grupos dosearam-se, ainda, as lipoproteínas: Colesterol total (CT), Colesterol HDL (HDLc), com as suas subfrações 2 e 3 (HDL 2 e HDL3), Colesterol LDL oxidado (LDLox),Triglicéridos (TG), Lipoproteína (a) [Lp(a)], Apolipoproteína A1 (ApoA1), Apolipoproteína B (ApoB) e Apolipoproteína E (ApoE). Definiram-se, em cada grupo, os dados demográficos, fatores de risco clássicos, terapêutica cardiovascular e o uso de anti-inflamatórios. Procedeu-se a análise multivariada em relação aos dados demográficos, fatores de risco e à terapêutica basal. Compararam-se as distribuições destas mesmas caraterísticas entre os dois grupos, assim como os valores séricos respetivos para as lipoproteínas estudadas. Procedeu-se à correlação entre as moléculas inflamatórias e as lipoproteínas, para todos os doentes estudados. Encontraram-se os coeficientes de regressão linear múltipla entre cada marcador inflamatório e o conjunto das moléculas lipídicas, por grupo. Finalmente, efetuou-se a comparação estatística entre os marcadores inflamatórios do grupo controlo e os marcadores inflamatórios do grupo EAM. Resultados: (1) Correlações encontradas, respetivamente, Pearson, Rho-Spearman e regressão-R2: IL-6/hs-CRP 0,549, p<0,001; 0,429, p=0,001; 0,302, p<0,001; MMP 3/hsCRP 0,325, p=0,014; 0,171, p=0,202; 0,106, p=0,014; TNF-α/hs-CRP 0,261, p=0,050; 0,315, p=0,017; 0,068, p=0.050; IL-6/cTnI admissão 0,486, p<0,001; 0,483, p<0,001; 0,236, p<0,001; MMP3/cTnI admissão 0,218, p=0,103; 0,146, p=0,278; 0,048, p=0,103; TNF-α/cTnI admissão 0,444, p=0,001; 0,380, p=0,004; 0,197, p=0,001; IL-6/cTnI 6-9h 0,676, p<0,001; 0,623, p<0,001; 0,456, p<0,01; MMP3/cTnI 6-9h 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ABSTRACT: 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ------------- ABSTRACT: Introduction: We reviewed the epidemiology, pathophysiology and current clinical knowledge about coronary heart disease, from its genesis to the acute myocardial infarction (AMI). The inflammatory theory for atherosclerosis, which has undergone considerable development in the last decade, was especially detailed. Markers of coronary atherosclerotic vulnerable plaque: The clinical and laboratory biomarkers associated with the unstable coronary atherosclerotic plaque vulnerable plaque are detailed. An emphasis was placed on the inflammatory mechanisms. Objectives: They are divided into two fundamental points: (1) To study in AMI patients, the relationship between the inflammatory molecules: Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Matrix metalloproteinase-3 (MMP3), unused in the clinical setting, with an inflammatory marker in clinical use: ultrasensitive C-reactive protein (hs-CRP), as well as a biomarker of myocardial injury: cardiac troponin I (cTnI). (2) To study, in the context of AMI, the Acute Phase Response (APR). We intend to demonstrate the impact of that clinical relevant phenomenon in the lipid profile and inflammatory biomarkers of our patients. Methods: (1) Prospective observational study of patients consecutively admitted for AMI (AMI group) in a single coronary care unit, after exclusion of trauma or infection. A peripheral assay at admission for IL-6, TNF-α, MMP3, hs-CRP and cTnI was performed. The latter was also valued in assays obtained 6-9 hours after admission. Linear correlation (Pearson's correlation coefficient, Spearman Rho's correlation coefficient and R2 regression) was performed between the three markers studied and the values of hs-CRP and cTnI (on admission and 6-9 hours after admission). Multiple linear regression was also obtained between cTnI on admission and 6-9h after, with all the inflammatory markers studied. (2) Case-control study between the AMI group and a random population of patients from an outpatient cardiology setting (control group). Cardiovascular events of any kind and infection or trauma were excluded in this group. The same inflammatory molecules were assayed in control and AMI groups. The following lipoproteins were also assayed: total cholesterol (TC), HDL cholesterol (HDLc) and subfractions 2 and 3 (HDL2 and HDL 3), oxidized LDL cholesterol (oxLDL), Triglycerides (TG), Lipoprotein (a) [Lp(a)], Apolipoprotein A1 (apoA1), Apolipoprotein B (ApoB) and Apolipoprotein E (ApoE). Demographics, classical risk factors, cardiovascular therapy and the use of anti-inflammatory drugs were appreciated in each group. The authors conducted a multivariate analysis with respect to demographics, risk factors and baseline therapy. The distribution of the same baseline characteristics was compared between the two groups, as well as the lipoprotein serum values. A correlation was performed between each inflammatory molecule and each of the lipoproteins, for all the patients studied. Multiple linear regression was determined between each inflammatory marker and all the lipid molecules per group. Finally, the statistical comparison between the inflammatory markers in the two groups was performed. Results: (1) The correlation coefficients recorded, respectively, Pearson, Spearman's Rho and regression-R2, were: IL-6/hs-CRP 0.549, p <0.001; 0.429, p=0.001; 0.302, p <0.001; MMP 3/hsCRP 0.325, p=0.014; 0.171, p=0.202; 0.106, p=0.014; TNF-α/hs-CRP 0.261, p=0.050; 0.315, p=0.017; 0.068, p=0.050; IL-6/admission cTnI 0.486, p<0.001; 0.483, p<0.001; 0.236, p<0.001; MMP3/admission cTnI 0.218, p=0.103; 0.146, p=0.278; 0.048, p=0.103; TNF-α/admission cTnI 0.444, p=0.001; 0.380, p=0.004; 0.197, p=0.001; IL-6/6-9 h cTnI 0.676, p<0.001; 0.149, p<0.001; 0.456, p <0.01; MMP3/6-9h cTnI 0.428, p=0.001; 0.149, p<0.001; 0.183, p=0.001; TNF-α/6-9 h cTnI 0.676, p<0,001; 0.452, p<0.001; 0.183, p<0,001. The multiple linear regression admission cTnI/inflammatory markers produced: (R=0.638, R2=0.407) p<0.001 and 6-9 h cTnI/inflammatory markers (R=0.780, R2=0.609) p<0.001. (2) Significances of the multivariate analysis were found for age (p=0.029), IMC>30 (p=0.070), Aspirin (p=0.040) and group (p=0.002). Important differences between the baseline data of the two groups (control group vs AMI): age (47.95 ± 11.55 vs 68.53±12.70 years) p<0.001; gender (18.18 vs 22.80%) p=0.076; diabetes mellitus (9.09% vs 36. 84%) p=0.012; Aspirin (18.18 vs. 66.66%) p<0.001; Clopidogrel (4, 54% vs 66.66%) p=0.033; Statins, 31.81% vs 66.14%, p=0.078, beta-blockers 18.18% vs 56.14%, p=0.011; anti-inflammatory drugs (4.54% vs 33.33%) p=0.009. Significant differences in the lipid pattern of the two groups (mean±SD or median/interquartile range, control group vs AMI): TC (208.45±35.03 vs 171.05±41.63 mg/dl) p<0.001; HDLc (51.50/18.25 vs 42.00/16.00 mg/dl) p=0.007; HDL2 (8.50/3.25 vs 10.00/6.00 mg/dl) p=0.292; HDL3 (41.75±9.82 vs 31.75±9.82 mg/dl) p<0.01; oxLDL (70.00/22.0 vs 43.50/21.00 U/L) p <0.001; TG (120.00/112.50 vs 107.00/86.00 mg/dl) p=0.527; Lp(a) (0.51/0.73 vs 0,51/0.50 g/L) p=0.854; apoA1 (1.38±0.63 vs 1.19±0.21 g/L) p=0.002; ApoB (0.96± 0.39 vs 0.78±0.28 g/L) p=0.004; ApoE (38.50/10,00 vs 38.00 /17,00 mg/L) p=0.574. In the linear correlations between inflammatory variables and lipid variables for all patients, we found a negative relationship between IL-6 and TC, HDLc, HDL3, ApoA1 and ApoB. The multiple linear regression inflammatory markers/lipid profile (control group) was: hs-CRP (R= 0.883, R2=0.780) p=0.022; IL6 (R=0.911, R2=0.830) p=0.007; MMP3 (R=0.498, R2=0.248) p=0.943; TNF-α (R=0.680, R2=0.462) p=0.524. For the linear regression inflammatory markers/lipid profile (AMI group) we found: hs-CRP (R=0.647, R2=0.418) p=0.004; IL-6 (R=0.544, R2=0.300) p=0.073; MMP3 (R=0.539, R2 =0.290) p=0.089; TNF-α (R=0.595, R2=0.354) p=0.022. The comparison between inflammatory markers in both groups (median/interquartile range, control group vs AMI) resulted as: hs-CRP (0.19/0.27 vs 0.42/2.53 mg/dl) p=0.001; IL-6 (4.90/5.48 vs 13.07/26.41 pg/ml) p<0.001; MMP3 (19.70/13.70 vs 10.10/10.40 ng/ml) p<0.001; TNF-α (8.67/6.71 vs 8.26/7.80 pg/dl) p=0.805. Conclusions: (1) In AMI patients there is a correlation between the inflammatory molecules IL-6, TNF-α and MMP3 with both the inflammatory marker hs-CRP and the ischemic marker cTnI. This correlation is strengthened for the cTnI at 6-9h post admission, particularly in the multiple linear regression to the four inflammatory markers studied. (2) IL-6 correlates negatively with the cholesterol lipoproteins. Hs-CRP and IL-6 are strongly correlated to the whole lipoprotein profile. AMI patients display reduced serum lipid levels. For the marker TNF-α no significant differences were found between groups, which were observed for IL-6 and hs-CRP (higher in the AMI group). MMP3 values are higher in the control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain PhD in Industrial Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática