5 resultados para sustainably designed schools

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a massive expansion of education in Portugal, since the 1970’s, educational attainment of the adult population in the country remains low. The numbers of working-age people in some form of continuing education are among the lowest, according to the OECD and EU-27 statistics. Technological Schools(TS), initially created in the 1990’s, under the umbrella of the Ministry of Economy in partnership with industry and industrial associations, aimed to prepare qualified staff for industries and services in the country, particularly in the engineering sector, through the provision of post secondary non-university programmes of studies, the CET (Technological Specialization Courses). Successful CET students are awarded a DET(Diploma of Technological Specialization), which corresponds to Vocational Qualification level IV of the EU, according to the latest alteration (2005) of the Education Systems Act (introduced in 1986). In this, CET’s are also clearly defined as one of the routes for access to Higher Education (HE), in Portugal. The PRILHE (Promoting Reflective and Independent Learning in Higher Education) multinational project, funded by the European Socrates Grundtvig Programme, aimed to identify the learning processes which enable adult students in higher education to become autonomous reflective learners and search best practices to support these learning processes. During this research, both quantitative and qualitative methods were used to determine how students organise their studies and develop their learning skills. The Portuguese partner in the project’ consortium used a two case studies approach, one with students of Higher Education Institutions and other with students of TS. This paper only applies to students of TS, as these have a predominant bias towards engineering. Results show that student motivation and professional teaching support contribute equally to the development of an autonomous and reflective approach to learning in adult students; this is essential for success in a knowledge economy, where lifelong learning is the key to continuous employment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os paradigmas concernentes à educação e ao atendimento de crianças com necessidades educativas especiais têm evoluído ao longo do tempo. De facto, se no paradigma da segregação o foco de incapacidade se situava no indivíduo, com o paradigma da inclusão o foco desloca-se para o ambiente, na medida em que este se deve organizar e preparar para dar resposta aos indivíduos com incapacidade. Por conseguinte, o meio deve assumir-se como facilitador à participação de todas as crianças. Tal fundamento comporta desafios para os professores e educadores, aos quais compete identificar as pressões de exclusão que inibem a participação plena de todos os alunos em todas as atividades inerentes ao meio escolar e acionar os suportes necessários para que tal não suceda. Com a realização deste estudo pretendemos conhecer de modo mais aprofundado as representações dos professores acerca da participação de alunos com diferentes tipos de incapacidade em variadas atividades e contextos escolares, identificando barreiras e facilitadores à sua participação e analisando os possíveis contributos pessoais dos professores para incrementar o nível de participação dos alunos com incapacidade em atividades inerentes ao meio escolar. O estudo operacionalizou-se através da aplicação de um inquérito por questionário, destinado a professores de todos os níveis de ensino e grupos de recrutamento. Através da aplicação deste instrumento, procurámos obter informações sobre os inquiridos, as representações dos professores acerca da participação de alunos com diferentes tipos de incapacidade em diversas atividades escolares, e, por fim, possíveis contributos para incrementar o nível de participação desses mesmos alunos. Os resultados sugerem que o tipo de incapacidade apresentado pelo aluno influencia as expetativas de participação de educadores e professores do ensino regular e da educação especial. Contudo, não confirmámos a existência de diferenças estatisticamente significativas entre os dois grupos de professores. No que concerne a possíveis contributos para incrementar a participação de alunos com incapacidade em diversas atividades escolares, identificámos a necessidade de se fomentar e desenvolver uma cultura de inclusão na escola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viva@Mat is a project developed by four Math teachers from the School of Industrial Studies and Management (ESEIG) that was born with the fundamental objective of engaging ESEIG students with different math backgrounds in Math challenging activities. Some of these activities were transformed into real palpable materials and others into small interactive ones, being the great majority of them proposed by ESEIG’ students themselves. This small project rapidly grew into something we didn’t expect – it did flow over the walls of our institution to the general involving community – specifically to pre-university schools through the Viva@Math Exhibits – Orange, Blue and Green (the fourth, the Purple one is still in development). Nowadays, Viva@Math Exhibits – the public face of the Project – are itinerant and have been travelling between several, and different institutions (pre-university schools, preparatory schools, libraries, among others), around ESEIG and IPP area of influence and having registered visitors/participants of all ages. In this article we will describe the Viva@Math Project, its different activities that are categorized in some “great groups” like Numerical Trivia, Logic Activities and Mental Calculation, Puzzles, Geometric Curiosities, Magic Tricks, among others, designed to challenge students to use the underlying logical-mathematical reasoning to any ordinary and everyday activity. We will give specific and concrete examples of some of the activities developed and, also, reproduce of the general stimulating feedback the Project receives from the enrolled “actors” (teachers, students and their relatives, institutions, among others). We feel that this Project has become a small “bridge” between the pre-university schools and Higher Education Institutions (HEI), in trying to shorten the “gap” between the institutions of different levels of education and bring them to work together.