3 resultados para software distribution in using status
em Instituto Politécnico do Porto, Portugal
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
Remote Laboratories or WebLabs constitute a first-order didactic resource in engineering faculties. However, in many cases, they lack a proper software design, both in the client and server side, which degrades their quality and academic usefulness. This paper presents the main characteristics of a Remote Laboratory, analyzes the software technologies to implement the client and server sides in a WebLab, and correlates these technologies with the characteristics to facilitate the selection of a technology to implement a WebLab. The results obtained suggest the adoption of a Service Oriented Laboratory Architecture-based approach for the design of future Remote Laboratories so that client-agnostic Remote Laboratories and Remote Laboratory composition are enabled. The experience with the real Remote Laboratory, WebLab-Deusto, is also presented.
Resumo:
Catastrophic events, such as wars and terrorist attacks, big tornadoes and hurricanes, huge earthquakes, tsunamis, floods, and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties have separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data set is better approximated by two PLs instead of one. We have plotted the two PL parameters corresponding to all terrorist events occurred in every year, from 1980 to 2010. We observe an interesting pattern in the chart, where the lines, that connect each pair of points defining the double PLs, are roughly aligned to each other.