130 resultados para sales pipeline
em Instituto Politécnico do Porto, Portugal
Resumo:
The aim is to examine the temporal trends of hip fracture incidence in Portugal by sex and age groups, and explore the relation with anti-osteoporotic medication. From the National Hospital Discharge Database, we selected from 1st January 2000 to 31st December 2008, 77,083 hospital admissions (77.4% women) caused by osteoporotic hip fractures (low energy, patients over 49 years-age), with diagnosis codes 820.x of ICD 9-CM. The 2001 Portuguese population was used as standard to calculate direct age-standardized incidence rates (ASIR) (100,000 inhabitants). Generalized additive and linear models were used to evaluate and quantify temporal trends of age specific rates (AR), by sex. We identified 2003 as a turning point in the trend of ASIR of hip fractures in women. After 2003, the ASIR in women decreased on average by 10.3 cases/100,000 inhabitants, 95% CI (− 15.7 to − 4.8), per 100,000 anti-osteoporotic medication packages sold. For women aged 65–69 and 75–79 we identified the same turning point. However, for women aged over 80, the year 2004 marked a change in the trend, from an increase to a decrease. Among the population aged 70–74 a linear decrease of incidence rate (95% CI) was observed in both sexes, higher for women: − 28.0% (− 36.2 to − 19.5) change vs − 18.8%, (− 32.6 to − 2.3). The abrupt turning point in the trend of ASIR of hip fractures in women is compatible with an intervention, such as a medication. The trends were different according to gender and age group, but compatible with the pattern of bisphosphonates sales.
Resumo:
Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.
Resumo:
Relatório de estágio realizado por: Tiago André Nogueira da Cruz Trabalho orientado pela Mestre Célia Sousa
Resumo:
Dissertação para a obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto (ISCAP) para a obtenção do Grau de Mestre em Auditoria Docente orientador: Mestre Domingos da Silva Duarte
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade para obtenção do Grau de Mestre em Auditoria Orientada por: Doutora Alcina Dias
Resumo:
Dissertação de Mestrado em Finanças Empresariais
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
A major determinant of the level of effective natural gas supply is the ease to feed customers, minimizing system total costs. The aim of this work is the study of the right number of Gas Supply Units – GSUs - and their optimal location in a gas network. This paper suggests a GSU location heuristic, based on Lagrangean relaxation techniques. The heuristic is tested on the Iberian natural gas network, a system modelized with 65 demand nodes, linked by physical and virtual pipelines. Lagrangean heuristic results along with the allocation of loads to gas sources are presented, using a 2015 forecast gas demand scenario.
Resumo:
Dissertação de Mestrado em Finanças Empresariais
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente