20 resultados para property (house) prices
em Instituto Politécnico do Porto, Portugal
Residential property loans and performance during property price booms: evidence from European banks
Resumo:
Understanding the performance of banks is of the utmost relevance, because of the impact of this sector on economic growth and financial stability. Of all the different assets that make up a bank portfolio, the residential mortgage loans constitute one of its main. Using the dynamic panel data method, we analyse the influence of residential mortgage loans on bank profitability and risk, using a sample of 555 banks in the European Union (EU-15), over the period from 1995 to 2008. We find that banks with larger weights of residential mortgage loans show lower credit risk in good times. This result explains why banks rush to lend on property during booms due to the positive effects it has on credit risk. The results show further that credit risk and profitability are lower during the upturn in the residential property price cycle. The results also reveal the existence of a non-linear relationship (U-shaped marginal effect), as a function of bank’s risk, between profitability and the residential mortgage loans exposure. For those banks that have high credit risk, a large exposure of residential mortgage loans is associated with higher risk-adjusted profitability, through lower risk. For banks with a moderate/low credit risk, the effects of higher residential mortgage loan exposure on its risk-adjusted profitability are also positive or marginally positive.
Resumo:
Understanding the performance of banks is of the u tmost importance due to the impact the sector may have on economic growth and financial stability. Residential mortgage loans constitute a large proportion of the portfolio of many banks and are one of the key assets in the determination of performance. Using a dynamic panel model , we analyse the impact of res idential mortgage loans on bank profitability and risk , based on a sample of 555 banks in the European Union ( EU - 15 ) , over the period from 1995 to 2008. We find that banks with larger weight s in residential mortgage loans display lower credit risk in good market conditions . This result may explain why banks rush to lend on property during b ooms due to the positive effect it has on credit risk . The results also show that credit risk and profitability are lower during the upturn in the residential property cy cle. Furthermore, t he results reveal the existence of a non - linear relationship ( U - shaped marginal effect), as a function of bank’s risk, between profitability and residential mortgage exposure . For those banks that have high er credit risk, a large exposur e to residential loans is associated with increased risk - adjusted profitability, through a reduction in risk. For banks with a moderate to low credit risk, the impact of higher exposure are also positive on risk - adjusted profitability.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
Resumo:
A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
D. João de Magalhães e Avelar (1754-1833) formou aquela que, ao tempo, era a maior biblioteca privada portuguesa. Com cerca de 36000 volumes, foi elogiada por personalidades nacionais e estrangeiras, por aliar à quantidade de volumes inúmeros e valiosíssimos manuscritos. Formada ao longo dos séculos XVIII e XIX, durante mais de 30 anos, originou, em 1833, o primeiro núcleo da actual Biblioteca Pública Municipal do Porto. Numa época em que possuir livros era sinónimo de prestígio social mas num período em que quase não havia tradição de bibliotecas públicas no nosso país, contrariamente ao que acontecia noutras realidades, a livraria privada de Avelar formou, com outras, a Real Biblioteca Pública da Cidade do Porto. Em 1833, aquando do primeiro aniversário da entrada do exército liberal no Porto, por decreto, criou-se a biblioteca portuense. Estabelecida na casa que servia de Hospício dos Religiosos de Santo António do Val da Piedade, à praça da Cordoaria, tinha como objectivo satisfazer a utilidade pública, estando aberta todos os dias, excepto domingos e feriados. Propriedade da cidade do Porto, ficava sujeita à administração da Câmara que se obrigava à sua guarda, manutenção, conservação, bem como à constante aquisição de espólio. Como veremos, tratou-se de um processo conflituoso mas o Porto obtinha, definitivamente, a sua biblioteca pública.
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.
Resumo:
Não existe uma definição única de processo de memória de longo prazo. Esse processo é geralmente definido como uma série que possui um correlograma decaindo lentamente ou um espectro infinito de frequência zero. Também se refere que uma série com tal propriedade é caracterizada pela dependência a longo prazo e por não periódicos ciclos longos, ou que essa característica descreve a estrutura de correlação de uma série de longos desfasamentos ou que é convencionalmente expressa em termos do declínio da lei-potência da função auto-covariância. O interesse crescente da investigação internacional no aprofundamento do tema é justificado pela procura de um melhor entendimento da natureza dinâmica das séries temporais dos preços dos ativos financeiros. Em primeiro lugar, a falta de consistência entre os resultados reclama novos estudos e a utilização de várias metodologias complementares. Em segundo lugar, a confirmação de processos de memória longa tem implicações relevantes ao nível da (1) modelação teórica e econométrica (i.e., dos modelos martingale de preços e das regras técnicas de negociação), (2) dos testes estatísticos aos modelos de equilíbrio e avaliação, (3) das decisões ótimas de consumo / poupança e de portefólio e (4) da medição de eficiência e racionalidade. Em terceiro lugar, ainda permanecem questões científicas empíricas sobre a identificação do modelo geral teórico de mercado mais adequado para modelar a difusão das séries. Em quarto lugar, aos reguladores e gestores de risco importa saber se existem mercados persistentes e, por isso, ineficientes, que, portanto, possam produzir retornos anormais. O objetivo do trabalho de investigação da dissertação é duplo. Por um lado, pretende proporcionar conhecimento adicional para o debate da memória de longo prazo, debruçando-se sobre o comportamento das séries diárias de retornos dos principais índices acionistas da EURONEXT. Por outro lado, pretende contribuir para o aperfeiçoamento do capital asset pricing model CAPM, considerando uma medida de risco alternativa capaz de ultrapassar os constrangimentos da hipótese de mercado eficiente EMH na presença de séries financeiras com processos sem incrementos independentes e identicamente distribuídos (i.i.d.). O estudo empírico indica a possibilidade de utilização alternativa das obrigações do tesouro (OT’s) com maturidade de longo prazo no cálculo dos retornos do mercado, dado que o seu comportamento nos mercados de dívida soberana reflete a confiança dos investidores nas condições financeiras dos Estados e mede a forma como avaliam as respetiva economias com base no desempenho da generalidade dos seus ativos. Embora o modelo de difusão de preços definido pelo movimento Browniano geométrico gBm alegue proporcionar um bom ajustamento das séries temporais financeiras, os seus pressupostos de normalidade, estacionariedade e independência das inovações residuais são adulterados pelos dados empíricos analisados. Por isso, na procura de evidências sobre a propriedade de memória longa nos mercados recorre-se à rescaled-range analysis R/S e à detrended fluctuation analysis DFA, sob abordagem do movimento Browniano fracionário fBm, para estimar o expoente Hurst H em relação às séries de dados completas e para calcular o expoente Hurst “local” H t em janelas móveis. Complementarmente, são realizados testes estatísticos de hipóteses através do rescaled-range tests R/S , do modified rescaled-range test M - R/S e do fractional differencing test GPH. Em termos de uma conclusão única a partir de todos os métodos sobre a natureza da dependência para o mercado acionista em geral, os resultados empíricos são inconclusivos. Isso quer dizer que o grau de memória de longo prazo e, assim, qualquer classificação, depende de cada mercado particular. No entanto, os resultados gerais maioritariamente positivos suportam a presença de memória longa, sob a forma de persistência, nos retornos acionistas da Bélgica, Holanda e Portugal. Isto sugere que estes mercados estão mais sujeitos a maior previsibilidade (“efeito José”), mas também a tendências que podem ser inesperadamente interrompidas por descontinuidades (“efeito Noé”), e, por isso, tendem a ser mais arriscados para negociar. Apesar da evidência de dinâmica fractal ter suporte estatístico fraco, em sintonia com a maior parte dos estudos internacionais, refuta a hipótese de passeio aleatório com incrementos i.i.d., que é a base da EMH na sua forma fraca. Atendendo a isso, propõem-se contributos para aperfeiçoamento do CAPM, através da proposta de uma nova fractal capital market line FCML e de uma nova fractal security market line FSML. A nova proposta sugere que o elemento de risco (para o mercado e para um ativo) seja dado pelo expoente H de Hurst para desfasamentos de longo prazo dos retornos acionistas. O expoente H mede o grau de memória de longo prazo nos índices acionistas, quer quando as séries de retornos seguem um processo i.i.d. não correlacionado, descrito pelo gBm(em que H = 0,5 , confirmando- se a EMH e adequando-se o CAPM), quer quando seguem um processo com dependência estatística, descrito pelo fBm(em que H é diferente de 0,5, rejeitando-se a EMH e desadequando-se o CAPM). A vantagem da FCML e da FSML é que a medida de memória de longo prazo, definida por H, é a referência adequada para traduzir o risco em modelos que possam ser aplicados a séries de dados que sigam processos i.i.d. e processos com dependência não linear. Então, estas formulações contemplam a EMH como um caso particular possível.
Resumo:
This paper studies the impact of energy and stock markets upon electricity markets using Multidimensional Scaling (MDS). Historical values from major energy, stock and electricity markets are adopted. To analyze the data several graphs produced by MDS are presented and discussed. This method is useful to have a deeper insight into the behavior and the correlation of the markets. The results may also guide the construction models, helping electricity markets agents hedging against Market Clearing Price (MCP) volatility and, simultaneously, to achieve better financial results.
Resumo:
The objective of this article is to provide additional knowledge to the discussion of long-term memory, leaning over the behavior of the main Portuguese stock index. The first four moments are calculated using time windows of increasing size and sliding time windows of fixed size equal to 50 days and suggest that daily returns are non-ergodic and non-stationary. Seeming that the series is best described by a fractional Brownian motion approach, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA). The findings indicate evidence of long term memory in the form of persistence. This evidence of fractal structure suggests that the market is subject to greater predictability and contradicts the efficient market hypothesis in its weak form. This raises issues regarding theoretical modeling of asset pricing. In addition, we carried out a more localized (in time) study to identify the evolution of the degree of long-term dependency over time using windows 200-days and 400-days. The results show a switching feature in the index, from persistent to anti-persistent, quite evident from 2010.
Resumo:
This article aims to contribute to the discussion of long-term dependence, focusing on the behavior of the main Belgian stock index. Non-parametric analyzes of the general characteristics of temporal frequency show that daily returns are non-ergodic and non-stationary. Therefore, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA), under the fractional Brownian motion approach, and we found slight evidence of long-term dependence. These results refute the random walk hypothesis with i.i.d. increments, which is the basis of the EMH in its weak form, and call into question some theoretical modeling of asset pricing. Other more localized complementary study, to identify the evolution of the degree of dependence over time windows, showed that the index has become less persistent from 2010. This may mean a maturing market by the extension of the effects of current financial crisis.
Resumo:
Esta dissertação considera a importância da avaliação imobiliária no mercado imobiliário, nas mais diversas situações. Contudo, cinge-se à determinação de um presumível valor de transação para apartamentos, moradias, lojas e terrenos, para venda ou arrendamento. Os mercados imobiliários escolhidos são dois concelhos conhecidos, da autora, por ser mais fácil a perceção dos locais e preços de venda. Foi escolhido o Concelho de Valongo para apartamentos, moradias e terrenos e o Concelho da Maia para lojas. Para determinarmos os valores em estudo adotaram-se os métodos de avaliação imobiliária mais comuns nomeadamente: o Método Comparativo, Método do Rendimento e o Método do Custo. São apresentados os métodos de avaliação mais utilizados, descrevendo-se a aplicação de cada um deles e as suas condições necessárias. Fez-se uma comparação entre cada um o que permitiu concluir sobre os mesmos. A recolha dos imóveis objeto de estudo foi efetuada em Sites de empresas imobiliárias que dispunham de informação necessária ao âmbito do trabalho. Aplicaram-se os métodos a cada caso recolhido e posteriormente fez-se a comparação dos resultados obtidos. Através de tratamento estatístico, utilizaram-se as técnicas de regressão múltipla para análise de relações entre os métodos de avaliação aplicados. Por fim, retiraram-se conclusões sobre a relação existente entre os três métodos de avaliação.