13 resultados para phylogeography, consensus approach, ensemble modeling, Pleistocene, ENM, ecological niche modeling
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Currently, the teaching-learning process in domains, such as computer programming, is characterized by an extensive curricula and a high enrolment of students. This poses a great workload for faculty and teaching assistants responsible for the creation, delivery, and assessment of student exercises. The main goal of this chapter is to foster practice-based learning in complex domains. This objective is attained with an e-learning framework—called Ensemble—as a conceptual tool to organize and facilitate technical interoperability among services. The Ensemble framework is used on a specific domain: computer programming. Content issues are tacked with a standard format to describe programming exercises as learning objects. Communication is achieved with the extension of existing specifications for the interoperation with several systems typically found in an e-learning environment. In order to evaluate the acceptability of the proposed solution, an Ensemble instance was validated on a classroom experiment with encouraging results.
Resumo:
This paper proposes a novel framework for modelling the Value for the Customer, the so-called the Conceptual Model for Decomposing Value for the Customer (CMDVC). This conceptual model is first validated through an exploratory case study where the authors validate both the proposed constructs of the model and their relations. In a second step the authors propose a mathematical formulation for the CMDVC as well as a computational method. This has enabled the final quantitative discussion of how the CMDVC can be applied and used in the enterprise environment, and the final validation by the people in the enterprise. Along this research, we were able to confirm that the results of this novel quantitative approach to model the Value for the Customer is consistent with the company's empirical experience. The paper further discusses the merits and limitations of this approach, proposing that the model is likely to bring value to support not only the contract preparation at an Ex-Ante Negotiation Phase, as demonstrated, but also along the actual negotiation process, as finally confirmed by an enterprise testimonial.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
There is a general consensus that in a competitive business environment, firms’ performance will depend on their capacity to innovate. To clarifying how, when and to what extent innovation affects the market and financial performance of firms, the authors deploy seemingly unrelated regression equation model to examine innovation in over 500 Portuguese firms from 1998 to 2004. The results confirm, as theorists have frequently assumed, that innovation positively affects firms’ performance; but they also suggest that the reverse is true, a result that is less intuitively obvious, given the complexity of the innovation process and local, national and global competitive environments.
Resumo:
This study modeled the impact on freshwater ecosystems of pharmaceuticals detected in biosolids following application on agricultural soils. The detected sulfonamides and hydrochlorothiazide displayed comparatively moderate retention in solid matrices and, therefore, higher transfer fractions from biosolids to the freshwater compartment. However, the residence times of these pharmaceuticals in freshwater were estimated to be short due to abiotic degradation processes. The non-steroidal anti-inflammatory mefenamic acid had the highest environmental impact on aquatic ecosystems and warrants further investigation. The estimation of the solid-water partitioning coefficient was generally the most influential parameter of the probabilistic comparative impact assessment. These results and the modeling approach used in this study serve to prioritize pharmaceuticals in the research effort to assess the risks and the environmental impacts on aquatic biota of these emerging pollutants.
Resumo:
A mathematical model is proposed for the evolution of temperature, chemical composition, and energy release in bubbles, clouds, and emulsion phase during combustion of gaseous premixtures of air and propane in a bubbling fluidized bed. The analysis begins as the bubbles are formed at the orifices of the distributor, until they explode inside the bed or emerge at the free surface of the bed. The model also considers the freeboard region of the fluidized bed until the propane is thoroughly burned. It is essentially built upon the quasi-global mechanism of Hautman et al. (1981) and the mass and heat transfer equations from the two-phase model of Davidson and Harrison (1963). The focus is not on a new modeling approach, but on combining the classical models of the kinetics and other diffusional aspects to obtain a better insight into the events occurring inside a fluidized bed reactor. Experimental data are obtained to validate the model by testing the combustion of commercial propane, in a laboratory-scale fluidized bed, using four sand particle sizes: 400–500, 315–400, 250–315, and 200–250 µm. The mole fractions of CO2, CO, and O2 in the flue gases and the temperature of the fluidized bed are measured and compared with the numerical results.
Resumo:
Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
É possível assistir nos dias de hoje, a um processo tecnológico evolutivo acentuado por toda a parte do globo. No caso das empresas, quer as pequenas, médias ou de grandes dimensões, estão cada vez mais dependentes dos sistemas informatizados para realizar os seus processos de negócio, e consequentemente à geração de informação referente aos negócios e onde, muitas das vezes, os dados não têm qualquer relacionamento entre si. A maioria dos sistemas convencionais informáticos não são projetados para gerir e armazenar informações estratégicas, impossibilitando assim que esta sirva de apoio como recurso estratégico. Portanto, as decisões são tomadas com base na experiência dos administradores, quando poderiam serem baseadas em factos históricos armazenados pelos diversos sistemas. Genericamente, as organizações possuem muitos dados, mas na maioria dos casos extraem pouca informação, o que é um problema em termos de mercados competitivos. Como as organizações procuram evoluir e superar a concorrência nas tomadas de decisão, surge neste contexto o termo Business Intelligence(BI). A GisGeo Information Systems é uma empresa que desenvolve software baseado em SIG (sistemas de informação geográfica) recorrendo a uma filosofia de ferramentas open-source. O seu principal produto baseia-se na localização geográfica dos vários tipos de viaturas, na recolha de dados, e consequentemente a sua análise (quilómetros percorridos, duração de uma viagem entre dois pontos definidos, consumo de combustível, etc.). Neste âmbito surge o tema deste projeto que tem objetivo de dar uma perspetiva diferente aos dados existentes, cruzando os conceitos BI com o sistema implementado na empresa de acordo com a sua filosofia. Neste projeto são abordados alguns dos conceitos mais importantes adjacentes a BI como, por exemplo, modelo dimensional, data Warehouse, o processo ETL e OLAP, seguindo a metodologia de Ralph Kimball. São também estudadas algumas das principais ferramentas open-source existentes no mercado, assim como quais as suas vantagens/desvantagens relativamente entre elas. Em conclusão, é então apresentada a solução desenvolvida de acordo com os critérios enumerados pela empresa como prova de conceito da aplicabilidade da área Business Intelligence ao ramo de Sistemas de informação Geográfica (SIG), recorrendo a uma ferramenta open-source que suporte visualização dos dados através de dashboards.