18 resultados para photometric stereo
em Instituto Politécnico do Porto, Portugal
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
A presente dissertação endereça o desenvolvimento de um sistema de visão stereo ativo para os robôs de futebol robótico da equipa ISePorto do ISEP, de modo a que estes tirem o máximo partido das câmaras rotativas neles existentes. Este trabalho surge da necessidade de melhorar a capacidade de perceção do ambiente por parte dos robôs, principalmente da perceção da bola quando não está no plano do campo e dos robôs adversários. Esta necessidade surge devido ao aumento da dinâmica que se tem vindo a veri car ultimamente nas competições. Para tal, foram estudados algumas trabalhos relacionados no que diz respeito a sistemas de visão stereo com baselines variáveis e eixos de rotação em ambas as câmaras, bem como fundamentos de visão stereo. Foi proposta uma arquitetura para o sistema de visão ativo de modo a ser aplicado em qualquer robô da equipa MSL (Middle Size League). Para tornar possível a implementação desta arquitetura foi desenvolvido um procedimento para a calibração e determinação em tempo real dos parâmetros extrínsecos do par stereo em função da posição angular dos eixos rotativos do robô. O sistema de visão foi também dotado de capacidade de sincronismo e foram implementadas funcionalidades ao nível de software que possibilitam a deteção de objetos na imagem, a correspondência de objetos presentes nas imagens de ambas as câmaras e consequentemente a determinação das posições tridimensionais desses objetos relativamente ao robô. O sistema desenvolvido foi testado e validado em cenário MSL ao nível de perceção da bola, robôs adversários e linhas do campo. Os resultados obtidos apresentam uma melhoria signi cativa, face à implementação atual dos robôs, na perceção tridimensional da bola quando não está no plano do campo, e dos robôs adversários.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
Resumo:
In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.
Resumo:
Esta dissertação aborda o problema de detecção e desvio de obstáculos "SAA- Sense And Avoid" em movimento para veículos aéreos. Em particular apresenta contribuições tendo em vista a obtenção de soluções para permitir a utilização de aeronaves não tripuladas em espaço aéreo não segregado e para aplicações civis. Estas contribuições caracterizam-se por: uma análise do problema de SAA em \UAV's - Unmmaned Aerial Vehicles\ civis; a definição do conceito e metodologia para o projecto deste tipo de sistemas; uma proposta de \ben- chmarking\ para o sistema SAA caracterizando um conjunto de "datasets\ adequados para a validação de métodos de detecção; respectiva validação experimental do processo e obtenção de "datasets"; a análise do estado da arte para a detecção de \Dim point features\ ; o projecto de uma arquitectura para uma solução de SAA incorporando a integração de compensação de \ego motion" e respectiva validação para um "dataset" recolhido. Tendo em vista a análise comparativa de diferentes métodos bem como a validação de soluções foi proposta a recolha de um conjunto de \datasets" de informação sensorial e de navegação. Para os mesmos foram definidos um conjunto de experiências e cenários experimentais. Foi projectado e implementado um setup experimental para a recolha dos \datasets" e realizadas experiências de recolha recorrendo a aeronaves tripuladas. O setup desenvolvido incorpora um sistema inercial de alta precisão, duas câmaras digitais sincronizadas (possibilitando análise de informa formação stereo) e um receptor GPS. As aeronaves alvo transportam um receptor GPS com logger incorporado permitindo a correlação espacial dos resultados de detecção. Com este sistema foram recolhidos dados referentes a cenários de aproximação com diferentes trajectórias e condições ambientais bem como incorporando movimento do dispositivo detector. O método proposto foi validado para os datasets recolhidos tendo-se verificado, numa análise preliminar, a detecção do obstáculo (avião ultraleve) em todas as frames para uma distância inferior a 3 km com taxas de sucesso na ordem dos 95% para distâncias entre os 3 e os 4 km. Os resultados apresentados permitem validar a arquitectura proposta para a solução do problema de SAA em veículos aéreos autónomos e abrem perspectivas muito promissoras para desenvolvimento futuro com forte impacto técnico-científico bem como sócio-economico. A incorporação de informa formação de \ego motion" permite fornecer um forte incremento em termos de desempenho.
Resumo:
A navegação e a interpretação do meio envolvente por veículos autónomos em ambientes não estruturados continua a ser um grande desafio na actualidade. Sebastian Thrun, descreve em [Thr02], que o problema do mapeamento em sistemas robóticos é o da aquisição de um modelo espacial do meio envolvente do robô. Neste contexto, a integração de sistemas sensoriais em plataformas robóticas, que permitam a construção de mapas do mundo que as rodeia é de extrema importância. A informação recolhida desses dados pode ser interpretada, tendo aplicabilidade em tarefas de localização, navegação e manipulação de objectos. Até à bem pouco tempo, a generalidade dos sistemas robóticos que realizavam tarefas de mapeamento ou Simultaneous Localization And Mapping (SLAM), utilizavam dispositivos do tipo laser rangefinders e câmaras stereo. Estes equipamentos, para além de serem dispendiosos, fornecem apenas informação bidimensional, recolhidas através de cortes transversais 2D, no caso dos rangefinders. O paradigma deste tipo de tecnologia mudou consideravelmente, com o lançamento no mercado de câmaras RGB-D, como a desenvolvida pela PrimeSense TM e o subsequente lançamento da Kinect, pela Microsoft R para a Xbox 360 no final de 2010. A qualidade do sensor de profundidade, dada a natureza de baixo custo e a sua capacidade de aquisição de dados em tempo real, é incontornável, fazendo com que o sensor se tornasse instantaneamente popular entre pesquisadores e entusiastas. Este avanço tecnológico deu origem a várias ferramentas de desenvolvimento e interacção humana com este tipo de sensor, como por exemplo a Point Cloud Library [RC11] (PCL). Esta ferramenta tem como objectivo fornecer suporte para todos os blocos de construção comuns que uma aplicação 3D necessita, dando especial ênfase ao processamento de nuvens de pontos de n dimensões adquiridas a partir de câmaras RGB-D, bem como scanners laser, câmaras Time-of-Flight ou câmaras stereo. Neste contexto, é realizada nesta dissertação, a avaliação e comparação de alguns dos módulos e métodos constituintes da biblioteca PCL, para a resolução de problemas inerentes à construção e interpretação de mapas, em ambientes indoor não estruturados, utilizando os dados provenientes da Kinect. A partir desta avaliação, é proposta uma arquitectura de sistema que sistematiza o registo de nuvens de pontos, correspondentes a vistas parciais do mundo, num modelo global consistente. Os resultados da avaliação realizada à biblioteca PCL atestam a sua viabilidade, para a resolução dos problemas propostos. Prova da sua viabilidade, são os resultados práticos obtidos, da implementação da arquitectura de sistema proposta, que apresenta resultados de desempenho interessantes, como também boas perspectivas de integração deste tipo de conceitos e tecnologia em plataformas robóticas desenvolvidas no âmbito de projectos do Laboratório de Sistemas Autónomos (LSA).
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores.Área de Especialização de Sistemas Autónomos
Resumo:
A exploração do meio subaquático utilizando visão computacional é ainda um processo complexo. Geralmente são utilizados sistemas de visão baseados em visão stereo, no entanto, esta abordagem apresenta limitações, é pouco precisa e é exigente em termos computacionais quando o meio de operação é o subaquático. Estas limitações surgem principalmente em dois cenários de aplicação: quando existe escassez de iluminação e em operações junto a infraestruturas subaquáticas. Consequentemente, a solução reside na utilização de fontes de informação sensorial alternativas ou complementares ao sistema de visão computacional. Neste trabalho propõe-se o desenvolvimento de um sistema de percepção subaquático que combina uma câmara e um projetor laser de um feixe em linha, onde o projetor de luz estruturada _e utilizado como fonte de informação. Em qualquer sistema de visão computacional, e ainda mais relevante em sistemas baseados em triangulação, a sua correta calibração toma um papel fulcral para a qualidade das medidas obtidas com o sistema. A calibração do sistema de visão laser foi dividida em duas etapas. A primeira etapa diz respeito à calibração da câmara, onde são definidos os parâmetros intrínsecos e os parâmetros extrínsecos relativos a este sensor. A segunda etapa define a relação entre a câmara e o laser, sendo esta etapa necessária para a obtenção de imagens tridimensionais. Assim, um dos principais desafios desta dissertação passou por resolver o problema da calibração inerente a este sistema. Desse modo, foi desenvolvida uma ferramenta que requer, pelo menos duas fotos do padrão de xadrez, com perspectivas diferentes. O método proposto foi caracterizado e validado em ambientes secos e subaquáticos. Os resultados obtidos mostram que o sistema _e preciso e os valores de profundidade obtidos apresentam um erro significativamente baixo (inferiores a 1 mm), mesmo com uma base-line (distância entre a centro óptico da câmara e o plano de incidência do laser) reduzida.
Resumo:
A sequente dissertação resulta do desenvolvimento de um sistema de navegação subaquático para um Remotely Operated Vehicle (ROV). A abordagem proposta consiste de um algoritmo em tempo real baseado no método de Mapeamento e Localização Simultâneo (SLAM) a partir de marcadores em ambientes marinhos não estruturados. SLAM introduz dois principais desafios: (i) reconhecimento dos marcadores provenientes dos dados raw do sensor, (ii) associação de dados. Na detecção dos marcadores foram aplicadas técnicas de visão artificial baseadas na extracção de pontos e linhas. Para testar o uso de features no visual SLAM em tempo real nas operações de inspecção subaquáticas foi desenvolvida uma plataforma modicada do RT-SLAM que integra a abordagem EKF SLAM. A plataforma é integrada em ROS framework e permite estimar a trajetória 3D em tempo real do ROV VideoRay Pro 3E até 30 fps. O sistema de navegação subaquático foi caracterizado num tanque instalado no Laboratório de Sistemas Autónomos através de um sistema stereo visual de ground truth. Os resultados obtidos permitem validar o sistema de navegação proposto para veículos subaquáticos. A trajetória adquirida pelo VideoRay em ambiente controlado é validada pelo sistema de ground truth. Dados para ambientes não estruturados, como um gasoduto, foram adquiridos e obtida respectiva trajetória realizada pelo robô. Os dados apresentados comprovam uma boa precisão e exatidão para a estimativa da posição.
Resumo:
Oceans - San Diego, 2013
Resumo:
Oceans - San Diego, 2013
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
Proceedings of the International Conference on Computer Vision Theory and Applications, 361-365, 2013, Barcelona, Spain