7 resultados para passing the mace
em Instituto Politécnico do Porto, Portugal
Resumo:
Broadcast networks that are characterised by having different physical layers (PhL) demand some kind of traffic adaptation between segments, in order to avoid traffic congestion in linking devices. In many LANs, this problem is solved by the actual linking devices, which use some kind of flow control mechanism that either tell transmitting stations to pause (the transmission) or just discard frames. In this paper, we address the case of token-passing fieldbus networks operating in a broadcast fashion and involving message transactions over heterogeneous (wired or wireless) physical layers. For the addressed case, real-time and reliability requirements demand a different solution to the traffic adaptation problem. Our approach relies on the insertion of an appropriate idle time before a station issuing a request frame. In this way, we guarantee that the linking devices’ queues do not increase in a way that the timeliness properties of the overall system turn out to be unsuitable for the targeted applications.
Resumo:
Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore they constitute the foundation upon which real-time applications are to be implemented. A potential leap towards the use of fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour. In the past few years several research works have been performed on a number of fieldbuses. However, these have mostly focused on the message passing mechanisms, without taking into account the communicating application tasks running in those distributed systems. The main contribution of this paper is to provide an approach for engineering real-time fieldbus systems where the schedulability analysis of the distributed system integrates both the characteristics of the application tasks and the characteristics of the message transactions performed by these tasks. In particular, we address the case of system where the Process-Pascal multitasking language is used to develop P-NET based distributed applications
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore, they constitute the foundation upon which real-time applications are to be implemented. A specific class of fieldbus communication networks is based on a simplified version of token-passing protocols, where each station may transfer, at most, a single message per token visit (SMTV). In this paper, we establish an analogy between non-preemptive task scheduling in single processors and the scheduling of messages on SMTV token-passing networks. Moreover, we clearly show that concepts such as blocking and interference in non-preemptive task scheduling have their counterparts in the scheduling of messages on SMTV token-passing networks. Based on this task/message scheduling analogy, we provide pre-run-time schedulability conditions for supporting real-time messages with SMTV token-passing networks. We provide both utilisation-based and response time tests to perform the pre-run-time schedulability analysis of real-time messages on SMTV token-passing networks, considering RM/DM (rate monotonic/deadline monotonic) and EDF (earliest deadline first) priority assignment schemes
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.
Resumo:
A manutenção é uma área extremamente importante, principalmente na indústria. Devidamente organizada, permitirá um fluxo produtivo devidamente planeado e executado, que permitirá a qualquer empresa manter o nível de facturação desejado e o prazo de entrega acordado com os clientes. De outra forma, poderá originar o caos. No entanto, os desafios de gestão da produção mais correntes, nomeadamente através do Lean Manufacturing, passam a exigir um pouco mais do que uma simples manutenção. Torna-se obrigatório fazer análises económicas que permitam averiguar quando cada equipamento passa a exigir custos de manutenção excessivos, os quais poderão obrigar a um recondicionamento mais acentuado do equipamento, o qual pode passar inclusivamente por uma melhoria da sua performance. Nestes casos, terá que existir uma “cumplicidade” entre a Direcção de Produção e a Manutenção, no sentido de averiguar o melhor momento para proceder a uma melhoria do equipamento, numa perspectiva de funcionamento global em linha de produção, adaptando-o à performance que será exigida ao conjunto. Neste domínio, o Projecto passa a prestar um serviço valiosíssimo à empresa, integrando-se no conjunto Produção + Manutenção, criando valor na intervenção, através do desenvolvimento de um trabalho que permite não só repor o estado natural da produção, mas sim promover uma melhoria sustentada da mesma. Este trabalho pretende reflectir e avaliar a relevância do Projecto neste tipo de operações, contribuindo de uma forma sistemática e sustentada para a melhoria contínua dos processos de fabrico. É apresentado um caso de estudo que pretende validar todo o desenvolvimento anteriormente realizado na matéria.