14 resultados para online platforms
em Instituto Politécnico do Porto, Portugal
Resumo:
Trabalho de Projeto apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializadas, sob orientação da Mestre Graça Chorão
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação de Mestre António da Silva Vieira
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
This paper proposes an online mechanism that can evaluate the sensitivity of single event upsets (SEUs) of field programmable gate arrays (FPGAs). The online detection mechanism cyclically reads and compares the values form the external and internal configuration memories, taking into account the mask information. This remote detection method also signals any mismatch as a result of a SEU that affects both used and not-used FPGA parts, which maximizes the monitored area. By utilizing an external, Web-accessible controller that is connected to the test infrastructure, the possibility of running the same operation in a remote manner is enabled. Moreover, the need for a local memory to store the mask values is also eliminated.
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. In this paper we study several approaches to adapt the learning content to mobile phones. We present an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação do Prof. Paulo Alexandre Pires
Resumo:
Trabalho de Projeto Mestrado em Marketing Digital apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação da Professora Doutora Paula Peres
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
An overwhelming problem in Math Curriculums in Higher Education Institutions (HEI), we are daily facing in the last decade, is the substantial differences in Math background of our students. When you try to transmit, engage and teach subjects/contents that your “audience” is unable to respond to and/or even understand what we are trying to convey, it is somehow frustrating. In this sense, the Math projects and other didactic strategies, developed through Learning Management System Moodle, which include an array of activities that combine higher order thinking skills with math subjects and technology, for students of HE, appear as remedial but important, proactive and innovative measures in order to face and try to overcome these considerable problems. In this paper we will present some of these strategies, developed in some organic units of the Polytechnic Institute of Porto (IPP). But, how “fruitful” are the endless number of hours teachers spent in developing and implementing these platforms? Do students react to them as we would expect? Do they embrace this opportunity to overcome their difficulties? How do they use/interact individually with LMS platforms? Can this environment that provides the teacher with many interesting tools to improve the teaching – learning process, encourages students to reinforce their abilities and knowledge? In what way do they use each available material – videos, interactive tasks, texts, among others? What is the best way to assess student’s performance in these online learning environments? Learning Analytics tools provides us a huge amount of data, but how can we extract “good” and helpful information from them? These and many other questions still remain unanswered but we look forward to get some help in, at least, “get some drafts” for them because we feel that this “learning analysis”, that tackles the path from the objectives to the actual results, is perhaps the only way we have to move forward in the “best” learning and teaching direction.