8 resultados para multimedia video
em Instituto Politécnico do Porto, Portugal
Resumo:
Personalised video can be achieved by inserting objects into a video play-out according to the viewer's profile. Content which has been authored and produced for general broadcast can take on additional commercial service features when personalised either for individual viewers or for groups of viewers participating in entertainment, training, gaming or informational activities. Although several scenarios and use-cases can be envisaged, we are focussed on the application of personalised product placement. Targeted advertising and product placement are currently garnering intense interest in the commercial networked media industries. Personalisation of product placement is a relevant and timely service for next generation online marketing and advertising and for many other revenue generating interactive services. This paper discusses the acquisition and insertion of media objects into a TV video play-out stream where the objects are determined by the profile of the viewer. The technology is based on MPEG-4 standards using object based video and MPEG-7 for metadata. No proprietary technology or protocol is proposed. To trade the objects into the video play-out, a Software-as-a-Service brokerage platform based on intelligent agent technology is adopted. Agencies, libraries and service providers are represented in a commercial negotiation to facilitate the contractual selection and usage of objects to be inserted into the video play-out.
Resumo:
The need for better adaptation of networks to transported flows has led to research on new approaches such as content aware networks and network aware applications. In parallel, recent developments of multimedia and content oriented services and applications such as IPTV, video streaming, video on demand, and Internet TV reinforced interest in multicast technologies. IP multicast has not been widely deployed due to interdomain and QoS support problems; therefore, alternative solutions have been investigated. This article proposes a management driven hybrid multicast solution that is multi-domain and media oriented, and combines overlay multicast, IP multicast, and P2P. The architecture is developed in a content aware network and network aware application environment, based on light network virtualization. The multicast trees can be seen as parallel virtual content aware networks, spanning a single or multiple IP domains, customized to the type of content to be transported while fulfilling the quality of service requirements of the service provider.
Resumo:
Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão
Resumo:
The year 2012 was the “boom year” in MOOC and all its outstanding growth until now, made us move forward in designing the first MOOC in our Institution (and the third in our country, Portugal). Most MOOC are video lectured based and the learning analytic process to these ones is just taking its first steps. Designing a video-lecture seems, at a first glance, very easy: one can just record a live lesson or lecture and turn it, directly, into a video-lecture (even here one may experience some “sound” and “camera” problems); but developing some engaging, appealing video-lecture, that motivates students to embrace knowledge and that really contributes to the teaching/learning process, it is not an easy task. Therefore questions like: “What kind of information can induce knowledge construction, in a video-lecture?”, “How can a professor interact in a video-lecture when he is not really there?”, “What are the video-lectures attributes that contribute the most to viewer’s engagement?”, “What seems to be the maximum “time-resistance” of a viewer?”, and many others, raised in our minds when designing video-lectures to a Mathematics MOOC from the scratch. We believe this technological resource can be a powerful tool to enhance students' learning process. Students that were born in digital/image era, respond and react slightly different to outside stimulus, than their teachers/professors ever did or do. In this article we will describe just how we have tried to overcome some of the difficulties and challenges we tackled when producing our own video-math-lectures and in what way, we feel, videos can contribute to the teaching and learning process at higher education level.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
Educational videos differ from other teaching and learning technologies as they allow the benefit of using visual perception. Video lectures are not new to education, however with the use of innovative video technologies they can improve academic outcomes and extend the reach of education. They may offer extraordinary new experiences for higher education institutions (HEI). Through them lecturers can provide information and contents to students, and if used creatively, video lectures can become a powerful technological tool in education, inside and outside classrooms. Inside a classroom it can motivate students and improve topics’ debate and outside it is a good support for students’ self- learning. In some cases they can be used to work some subjects standing behind, but needed to support actual courses contents, that students do not remember (or were not even taught), opening an “in front to the past door” that backs students self-study. The student-educator dynamic is changing. Students are expecting exceptional instruction and educators are expecting students to be more and more well informed about subjects from online viewing.This article explores some of the potential benefits and challenges associated with the use of video lectures in the teaching and learning process at higher education. We will also discuss some thoughts and examples for the use of teaching materials to enhance student’s learning and try to understand how video can act as powerful and innovative to enlighten teaching and learning (note that unfortunately, sometimes, the opposite is happening).
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializadas, sob orientação do Doutor Manuel Moreira da Silva Esta versão não contém as críticas e sugestões dos elementos do júri
Resumo:
Hoje em dia existem múltiplas aplicações multimédia na Internet, sendo comum qualquer website apresentar mais de uma forma de visualização de informação além do texto como, por exemplo: imagens, áudio, vídeo e animação. Com aumento do consumo e utilização de Smartphone e Tablets, o volume de tráfego de internet móvel tem vindo a crescer rapidamente, bem como o acesso à internet através da televisão. As aplicações web-based ganham maior relevância devido à maior partilha ou consumo de conteúdos multimédia, com ou sem edição ou manipulação da mesma, através de redes sociais, como o Facebook. Neste documento é apresentado o estudo de alternativas HTML5 e a implementação duma aplicação web-based no âmbito do Mestrado de Engenharia Informática, ramo de Sistemas Gráficos e Multimédia, no Instituto Superior Engenharia do Porto (ISEP). A aplicação tem como objetivo a edição e manipulação de imagens, tanto em desktop como em dispositivos móveis, sendo este processo exclusivamente feito no lado do cliente, ou seja, no Browser do utilizador. O servidor é usado somente para o armazenamento da aplicação. Durante o desenvolvimento do projeto foi realizado um estudo de soluções de edição e manipulação de imagem existentes no mercado, com a respetiva análise de comparação e apresentadas tecnologias Web modernas como HTML5, CSS3 e JavaScript, que permitirão desenvolver o protótipo. Posteriormente, serão apresentadas, detalhadamente, as várias fases do desenvolvimento de um protótipo, desde a análise do sistema, à apresentação do protótipo e indicação das tecnologias utilizadas. Também serão apresentados os resultados dos inquéritos efetuados a um grupo de pessoas que testaram esse protótipo. Finalmente, descrever-se-á de forma mais exaustiva, a implementação e serão apontadas dificuldades encontradas ao longo do desenvolvimento, bem como indicadas futuras melhorias a introduzir.