6 resultados para microcrystalline chitosan
em Instituto Politécnico do Porto, Portugal
Resumo:
The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII7–10). Immobilized rhFNIII7–10 was characterized in terms of amount (125I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII7–10 with rhFNIII7–10 concentration, and, for the same concentration, higher amounts of rhFNIII7–10 on DA 4% compared with DA 15%. Moreover, rhFNIII7–10 concentrations as low as 5 and 20 lgml 1 in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20 lgml 1 human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII7–10 grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.
Resumo:
A new immunosensor is presented for human chorionic gonadotropin (hCG), made by electrodepositing chitosan/gold-nanoparticles over graphene screen-printed electrode (SPE). The antibody was covalently bound to CS via its Fc-terminal. The assembly was controlled by electrochemical Impedance Spectroscopy (EIS) and followed by Fourier Transformed Infrared (FTIR). The hCG-immunosensor displayed linear response against the logarithm-hCG concentration for 0.1–25 ng/mL with limit of detection of 0.016 ng/mL. High selectivity was observed in blank urine and successful detection of hCG was also achieved in spiked samples of real urine from pregnant woman. The immunosensor showed good detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).
Resumo:
Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2–CH4 and H2–CH4–N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 m. A micro-abrasion tribometer was used, with 3 m diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25–0.75 N. The wear rate for MPCVD NCD (3.7±0.8 × 10−5 m3N−1m−1) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
introdução de drogas que assegurem o crescimento e a preservação das espécies, mas que eventualmente se espalham para o meio aquático envolvente, promovendo alterações da biodiversidade e entrar, directamente ou indirectamente, na cadeia alimentar. Quando estas drogas são agentes antimicrobianos de uso humano, tais como a amoxicilina, tetraciclina ou sulfonamidas, há um alto risco de aparecimento de espécies bacterianas resistentes, algo que constitui uma ameaça grave para a saúde pública. Esta introdução de agentes antimicrobianos no ambiente aquático através do sector das pescas pode ser reduzida através da monitorização regular ou contínua dos níveis de antibióticos no sistema de água, durante a execução, bem como antes da descarga para o meio aquático. Para isso, é necessário métodos analíticos que permitam uma frequência analítica elevada e continua, nos tanques de cultivos dos peixes. O presente trabalho descreve para este efeito, um sensor constituído por papel quimicamente modificado por reações em monocamadas, assumindo uma coloração típica após contacto com o antibiótico . A intensidade da coloração estava relacionada com a concentração desse antibiótico. A modificação do papel foi baseada na alteração química das unidades de glucose do papel por meio de uma reação covalente com reagentes apropriados. De seguida, criou-se uma camada de quitosano sobre o papel modificado onde se adsorveu a espécie metálica capaz de mudar de cor na presença de sulfadiazina. As modificações resultantes foram avaliadas em relação a vários parâmetros, com o intuito de provocar uma variação de cor intensa face à concentração de antibiótico. Os sensores preparados foram caracterizados do ponto de vista do seu desempenho analítico, efetuou-se a construção de uma gama de concentração que permitiu obter uma resposta previsível e transversal em relação a outros antibióticos, bem como a identificação de uma relação linear entre concentração e coordenadas de cor e a aplicação de sensores em amostra de água ambiental dopados com antibiótico. Generalizando, foi possível estabelecer um processo de modificação simples de papel capaz de medir a presença e quantidade de sulfadiazina