17 resultados para localized electrochemical analysis

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of opiates is of vital interest in drug abuse monitoring and research. This review presents a general overview of the electrochemical methods used for detection and quantification of opiates in a variety of matrices. Emphasis has been placed on the voltammetric methods used for study and determination of morphine, codeine, and heroin. Specific issues that need to be solved and better explained as well as future trends in the use of electrochemical methods in the examination of opiates are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electroactivity of butylate (BTL) is studied by cyclic voltammetry (CV) and square wave voltammetry (SWV) at a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE). Britton–Robinson buffer solutions of pH 1.9–11.5 are used as supporting electrolyte. CV voltammograms using GCE show a single anodic peak regarding the oxidation of BTL at +1.7V versus AgCl/ Ag, an irreversible process controlled by diffusion. Using a HMDE, a single cathodic peak is observed, at 1.0V versus AgCl/Ag. The reduction of BTL is irreversible and controlled by adsorption. Mechanism proposals are presented for these redox transformations. Optimisation is carried out univaryingly. Linearity ranges were 0.10–0.50 mmol L-1 and 2.0–9.0 µmolL-1 for anodic and cathodic peaks, respectively. The proposed method is applied to the determination of BTL in waters. Analytical results compare well with those obtained by an HPLC method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human epidermal growth factor receptor 2 (HER2) is a breast cancer biomarker that plays a major role in promoting breast cancer cell proliferation and malignant growth. The extracellular domain (ECD) of HER2 can be shed into the blood stream and its concentration is measurable in the serum fraction of blood. In this work an electrochemical immunosensor for the analysis of HER2 ECD in human serum samples was developed. To achieve this goal a screen-printed carbon electrode, modified with gold nanoparticles, was used as transducer surface. A sandwich immunoassay, using two monoclonal antibodies, was employed and the detection of the antibody–antigen interaction was performed through the analysis of an enzymatic reaction product by linear sweep voltammetry. Using the optimized experimental conditions the calibration curve (ip vs. log[HER2 ECD]) was established between 15 and 100 ng/mL and a limit of detection (LOD) of 4.4 ng/mL was achieved. These results indicate that the developed immunosensor could be a promising tool in breast cancer diagnostics, patient follow-up and monitoring of metastatic breast cancer since it allows quantification in a useful concentration range and has an LOD below the established cut-off value (15 ng/mL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disposable screen-printed electrodes (SPCE) were modified using a cosmetic product to partially block the electrode surface in order to obtain a microelectrode array. The microarrays formed were electropolymerized with aniline. Scanning electron microscopy was used to evaluate the modified and polymerized electrode surface. Electrochemical characteristics of the constructed sensor for cadmium analysis were evaluated by cyclic and square-wave voltammetry. Optimized stripping procedure in which the preconcentration of cadmium was achieved by depositing at –1.20 V (vs. Ag/AgCl) resulted in a well defined anodic peak at approximately –0.7 V at pH 4.6. The achieved limit of detection was 4 × 10−9 mol dm−3. Spray modified and polymerized microarray electrodes were successfully applied to quantify cadmium in fish sample digests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immobilization and electro-oxidation of guanine and adenine asDNA bases on glassy carbon electrode are evaluated by square wave voltammetric analysis. The influence of electrochemical pretreatments, nature of supporting electrolyte, pH, accumulation time and composition of DNA nucleotides on the immobilization effect and the electrochemical mechanism are discussed. Trace levels of either guanine or adenine can be readily detected following short accumulation time with detection limits of 35 and 40 ngmL−1 for guanine and adenine, respectively. The biosensors of guanine and adenine were employed for the voltammetric detection of antioxidant capacity in flavored water samples. The method relies on monitoring the changes of the intrinsic anodic response of the surface-confined guanine and adenine species, resulting from its interaction with free radicals from Fenton-type reaction in absence and presence of antioxidant. Ascorbic acid was used as standard to evaluate antioxidant capacities of samples. Analytical data was compared with that of FRAP method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behaviour of propanil and related N-substituted amides (acetanilide and N,N-diphenylacetamide) was studied by cyclic and square wave voltammetry using a glassy carbon electrode. Propanil has been found to have chemical stability under the established analytical conditions and showed an oxidation peak at +1.27V versus Ag/AgCl at pH 7.5. N,N-diphenylacetamide has a higher oxidation potential than the other compounds of +1.49V versus Ag/AgCl. Acetanilide oxidation occurred at a potential similar to that of propanil, +1.24V versus Ag/AgCl. These results are in agreement with the substitution pattern of the nitrogen atom of the amide. A degradation product of propanil, 3,4-dichloroaniline (DCA), was also studied, and showed an oxidation peak at +0.66V versus Ag/AgCl. A simple and specific quantitative electroanalytical method is described for the analysis of propanil in commercial products that contain propanil as the active ingredient, used in the treatment of rice crops in Portugal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of citalopram was studied by square-wave and square-wave adsorptive-stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately -1.25V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0x10-7 and 2.0x10-6 mol L-1 with a limit of detection of 5x10-8 mol L-1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two analytical methods for the quality control of dihydrocodeine in commercial pharmaceutical formulations have been developed and compared with reference methods: a square wave voltammetric (SWV) method and a flow injection analysis system with electrochemical detection (FIA-EC). The electrochemical methods proposed were successfully applied to the determination of dihydrocodeine in pharmaceutical tablets and in oral solutions. These methods do not require any pretreatment of the samples, the formulation only being dissolved in a suitable electrolyte. Validation of the methods showed it to be precise, accurate and linear over the concentration range of analysis. The automatic procedure based on a flow injection analysis manifold allows a sampling rate of 115 determinations per hour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that, besides the well-recognized T3 and T4 hormones, there are other relevant thyroid hormones circulating in the human body. In particular, this is the case for 3-iodothyronamine (T1AM) and thyronamine (T0AM). One of the reasons for the lack of studies showing their precise importance is the absence of analytical methodologies available. Herein, for the first time, T1AM and T0AM are electrochemically characterized. T0AM was sensed by means of a glassy carbon electrode; furthermore, T1AM was sensed both with a graphitic surface (oxidatively) as well as with mercury (reductively). For both compounds, after oxidation, it was possible to observe the reversible redox reaction concerning the benzoquinone/hydroquinone couple, thus increasing the specificity of the electroanalysis. Therefore, this work provides the basis for an ‘at-point-of-use’ electrochemical strip test for T1AM and T0AM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an optical sensor based on localized surface plasmon resonance (LSPR) to study small-molecule protein interaction combining high sensitivity refractive index sensing for quantitative binding information and subsequent conformation-sensitive plasmon-activated circular dichroism spectroscopy. The interaction of α-amylase and a small-size molecule (PGG, pentagalloyl glucose) was log concentration-dependent from 0.5 to 154 μM. In situ tests were additionally successfully applied to the analysis of real wine samples. These studies demonstrate that LSPR sensors to monitor small molecule–protein interactions in real time and in situ, which is a great advance within technological platforms for drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.