2 resultados para isoprenoid pathway

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origins of the vast majority of the words we use in contemporary English go back as far as Old or Middle English. In contrast, alright and all right in their present-day application appear to be the result of a more recent evolution, as there is no evidence of their use, not even in the two-word form, in the published fiction before the 18th century. Furthermore, there are not in the research literature, at least to my knowledge, any previous linguistic studies on this specific subject matter. The present article is simply an attempt to describe the various processes of diachronic change that brought about the emergence of alright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.