18 resultados para fish protein phosphatases
em Instituto Politécnico do Porto, Portugal
Resumo:
A growth trial with Senegalese Sole (Solea senegalensis Kaup, 1858) juveniles fed with diets containing increasing replacement levels of fishmeal by mixtures of plant protein sources was conducted over 12 weeks. Total fat contents of muscle, liver, viscera, skin, fins and head tissues were determined, as well as fatty acid profiles of muscle and liver (GC-FID analysis). Liver was the preferential local for fat deposition (5.5–10.8% of fat) followed by fins (3.4–6.7% fat). Increasing levels of plant protein in the diets seems to be related to increased levels of total lipids in the liver. Sole muscle is lean (2.4–4.0% fat), with total lipids being similar among treatments. Liver fatty acid profile varied significantly among treatments. Plant protein diets induced increased levels of C16:1 and C18:2 n -6 and a decrease in ARA and EPA levels. Muscle fatty acid profile also evidenced increasing levels of C18:2 n 6, while ARA and DHA remained similar among treatments. Substitution of fishmeal by plant protein is hence possible without major differences on the lipid content and fatty acid profile of the main edible portion of the fish – the muscle.
Resumo:
Over the past years, ω3 fatty acids, namely EPA and DHA, have been recognized as presenting multiple health benefits. Several studies consider fish oil as the most important source of EPA and DHA. Nowadays, canned fish industry plays a very important role in Portuguese economy. However, expansion of this business brought some environmental concerns due to the high amount of by-products generated. Nevertheless, this problem can be substantially reduced by the recovery of some of the by-product components, diminishing its contamination load and simultaneously obtaining value-added products. This study was born from the growing interest in obtaining new sources of lipids rich in ω3 fatty acids, combined with environmental concerns related to the production of wastes from the fish canning industries, rich in these compounds. It thus intends to evaluate lipid extraction methods in liquid by-products from the fish canning industry, aiming to obtain fractions rich in ω3 fatty acids. Additionally, in a biorefining concept, the protein content of the remaining aqueous fractions was also quantified.
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
In this work, a microwave-assisted extraction (MAE) methodology was compared with several conventional extraction methods (Soxhlet, Bligh & Dyer, modified Bligh & Dyer, Folch, modified Folch, Hara & Radin, Roese-Gottlieb) for quantification of total lipid content of three fish species: horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), and sardine (Sardina pilchardus). The influence of species, extraction method and frozen storage time (varying from fresh to 9 months of freezing) on total lipid content was analysed in detail. The efficiencies of methods MAE, Bligh & Dyer, Folch, modified Folch and Hara & Radin were the highest and although they were not statistically different, differences existed in terms of variability, with MAE showing the highest repeatability (CV = 0.034). Roese-Gottlieb, Soxhlet, and modified Bligh & Dyer methods were very poor in terms of efficiency as well as repeatability (CV between 0.13 and 0.18).
Resumo:
An accurate and sensitive method for determination of 18 polycyclic aromatic hydrocarbons (PAHs) (16 PAHs considered by USEPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in fish samples was validated. Analysis was performed by microwave-assisted extraction and liquid chromatography with photodiode array and fluorescence detection. Response surface methodology was used to find the optimal extraction parameters. Validation of the overall methodology was performed by spiking assays at four levels and using SRM 2977. Quantification limits ranging from 0.15–27.16 ng/g wet weight were obtained. The established method was applied in edible tissues of three commonly consumed and commercially valuable fish species (sardine, chub mackerel and horse mackerel) originated from Atlantic Ocean. Variable levels of naphthalene (1.03–2.95 ng/g wet weight), fluorene (0.34–1.09 ng/g wet weight) and phenanthrene (0.34–3.54 ng/g wet weight) were detected in the analysed samples. None of the samples contained detectable amounts of benzo[a]pyrene, the marker used for evaluating the occurrence and carcinogenic effects of PAHs in food.
Resumo:
QuEChERS method was evaluated for extraction of 16 PAHs from fish samples. For a selective measurement of the compounds, extracts were analysed by LC with fluorescence detection. The overall analytical procedure was validated by systematic recovery experiments at three levels and by using the standard reference material SRM 2977 (mussel tissue). The targeted contaminants, except naphthalene and acenaphthene, were successfully extracted from SRM 2977 with recoveries ranging from 63.5–110.0% with variation coefficients not exceeding 8%. The optimum QuEChERS conditions were the following: 5 g of homogenised fish sample, 10 mL of ACN, agitation performed by vortex during 3 min. Quantification limits ranging from 0.12– 1.90 ng/g wet weight (0.30–4.70 µg/L) were obtained. The optimized methodology was applied to assess the safety concerning PAHs contents of horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), sardine (Sardina pilchardus) and farmed seabass (Dicentrarchus labrax). Although benzo(a)pyrene, the marker used for evaluating the carcinogenic risk of PAHs in food, was not detected in the analysed samples (89 individuals corresponding to 27 homogenized samples), the overall mean concentration ranged from 2.52 l 1.20 ng/g in horse mackerel to 14.6 ± 2.8 ng/ g in farmed seabass. Significant differences were found between the mean PAHs concentrations of the four groups.
Resumo:
Three commonly consumed and commercially valuable fish species (sardine, chub and horse mackerel) were collected from the Northeast and Eastern Central Atlantic Ocean in Portuguese waters during one year. Mercury, cadmium, lead and arsenic amounts were determined in muscles using graphite furnace and cold vapour atomic absorption spectrometry. Maximum mean levels of mercury (0.1715 ± 0.0857 mg/kg, ww) and arsenic (1.139 ± 0.350 mg/kg, ww) were detected in horse mackerel. The higher mean amounts of cadmium (0.0084 ± 0.0036 mg/kg, ww) and lead (0.0379 ± 0.0303 mg/kg, ww) were determined in chub mackerel and in sardine, respectively. Intra- and inter-specific variability of metals bioaccumulation was statistically assessed and species and length revealed to be the major influencing biometric factors, in particular for mercury and arsenic. Muscles present metal concentrations below the tolerable limits considered by European Commission Regulation and Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). However, estimation of non-carcinogenic and carcinogenic health risks by the target hazard quotient and target carcinogenic risk, established by the US Environmental Protection Agency, suggests that these species must be eaten in moderation due to possible hazard and carcinogenic risks derived from arsenic (in all analyzed species) and mercury ingestion (in horse and chub mackerel species).
Resumo:
The tanning industry generates a high quantity of solid wastes. Therefore, there is a need to create valorization [added value] options for these wastes. The main objective of the present work was to study the effect of protein hydrolysates (HP) prepared from fleshings on leather dyeing. During previous studies it was found that the application of HP products, obtained from fleshings, in leather retannage intensified the colour of crust leather. In this work the CIELAB colour system was used to evaluate the effect of HP on retannage processes. The main conclusions of this study were: (i) HP can be used instead of a dicyanodiamide resin (Fortan DC) if the colour parameters of the standard procedure are to be maintained, and (ii) the replacement of an acrylic resin (Fortan A40) by glutaraldehyde-modified HP (GHP) results in a darker skin, and can therefore be interesting for the reduction of the quantity of dye used.
Resumo:
Phenylketonuria is an inborn error of metabolism, involving, in most cases, a deficient activity of phenylalanine hydroxylase. Neonatal diagnosis and a prompt special diet (low phenylalanine and natural-protein restricted diets) are essential to the treatment. The lack of data concerning phenylalanine contents of processed foodstuffs is an additional limitation for an already very restrictive diet. Our goals were to quantify protein (Kjeldahl method) and amino acid (18) content (HPLC/fluorescence) in 16 dishes specifically conceived for phenylketonuric patients, and compare the most relevant results with those of several international food composition databases. As might be expected, all the meals contained low protein levels (0.67–3.15 g/100 g) with the highest ones occurring in boiled rice and potatoes. These foods also contained the highest amounts of phenylalanine (158.51 and 62.65 mg/100 g, respectively). In contrast to the other amino acids, it was possible to predict phenylalanine content based on protein alone. Slight deviations were observed when comparing results with the different food composition databases.
Resumo:
Nutritional management is essential for Phenylketonuria (PKU) treatment, consisting in a semi-synthetic and low phenylalanine (Phe) diet, which includes strictly controlled amounts of low protein natural foods (essentially fruits and vegetables) supplemented with Phe-free protein substitutes and dietetic low-protein products. PKU diet has to be carefully planned, providing the best ingredient combinations, so that patients can achieve good metabolic control and an adequate nutritional status. Hereupon, it is mandatory to know the detailed composition of natural and/or cooked foodstuffs prepared specifically for these patients. We intended to evaluate sixteen dishes specifically prepared for PKU patients, regarding the nutritional composition, Phe and tyrosine (Tyr) contents, fatty acids profile, and vitamins E and B12 amounts. The nutritional composition of the cooked samples was 15.5–92.0 g/100 g, for moisture; 0.7–3.2 g/100 g, for protein; 0.1–25.0 g/100 g, for total fat; and 5.0–62.0 g/100 g, for total carbohydrates. Fatty acids profile and vitamin E amount reflected the type of fat used. All samples were poor in vitamin B12 (0.3–0.8 μg/100 g). Boiled rice presented the highest Phe content: 50.3 mg/g of protein. These data allow a more accurate calculation of the diet portions to be ingested by the patients according to their individual tolerance.
Resumo:
Background Gastric cancer remains a serious health concern worldwide. Patients would greatly benefit from the discovery of new biomarkers that predict outcome more accurately and allow better treatment and follow-up decisions. Here, we used a retrospective, observational study to assess the expression and prognostic value of the transcription factors SOX2 and CDX2 in gastric cancer. Methods SOX2, CDX2, MUC5AC and MUC2 expression were assessed in 201 gastric tumors by immunohistochemistry. SOX2 and CDX2 expression were crossed with clinicopathological and follow-up data to determine their impact on tumor behavior and outcome. Moreover, SOX2 locus copy number status was assessed by FISH (N = 21) and Copy Number Variation Assay (N = 62). Results SOX2 was expressed in 52% of the gastric tumors and was significantly associated with male gender, T stage and N stage. Moreover, SOX2 expression predicted poorer patient survival, and the combination with CDX2 defined two molecular phenotypes, SOX2+CDX2- versus SOX2-CDX2+, that predict the worst and the best long-term patients’ outcome. These profiles combined with clinicopathological parameters stratify the prognosis of patients with intestinal and expanding tumors and in those without signs of venous invasion. Finally, SOX2 locus copy number gains were found in 93% of the samples reaching the amplification threshold in 14% and significantly associating with protein expression. Conclusions We showed, for the first time, that SOX2 combined with CDX2 expression profile in gastric cancer segregate patients into different prognostic groups, complementing the clinicopathological information. We further demonstrate a molecular mechanism for SOX2 expression in a subset of gastric cancer cases.
Resumo:
This work presents and analyses the fat and fuel properties and the methyl ester profile of biodiesel from animal fats and fish oil (beef tallow, pork lard, chicken fat and sardine oil). Also, their sustainability is evaluated in comparison with rapeseed biodiesel and fossil diesel, currently the dominant liquid fuels for transportation in Europe. Results show that from a technological point of view it is possible to use animal fats and fish oil as feedstock for biodiesel production. From the sustainability perspective, beef tallow biodiesel seems to be the most sustainable one, as its contribution to global warming has the same value of fossil diesel and in terms of energy efficiency it has the best value of the biodiesels under consideration. Although biodiesel is not so energy efficient as fossil diesel there is room to improve it, for example, by replacing the fossil energy used in the process with renewable energy generated using co-products (e.g. straw, biomass cake, glycerine).
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.
Resumo:
This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.