41 resultados para district heat energy production
em Instituto Politécnico do Porto, Portugal
Resumo:
O presente trabalho tem como principal objectivo o estudo da possibilidade de recuperação de calor de um efluente proveniente do tratamento primário da fábrica do grupo Portucel Soporcel (fábrica produtora de pasta de papel), para o aquecimento da corrente de lamas do digestor anaeróbio da SimRia S.A. – ETAR Norte, (ambas localizadas em Cacia, distrito de Aveiro). A solução consiste na implementação de um sistema de permuta térmica entre estas duas correntes, constituído fundamentalmente por dois permutadores de placas em espiral, montados em paralelo que operam em contra-corrente. Segundo este novo sistema de aquecimento, as lamas abandonam o digestor anaeróbio da mesma ETAR a um caudal de 110 m3/h, que se dividirá em duas linhas, sendo admitidas em cada permutador a 55 m3/h e a uma temperatura de 32 ºC regressando ao digestor a uma temperatura de 37 ºC (temperatura óptima a que ocorre a digestão anaeróbia das lamas). O efluente disponível, abandona o tratamento primário da Portucel, a 45 ºC e é encaminhado até aos permutadores da SimRia S.A., onde vai trocar calor com as lamas e regressa à Portucel a 40ºC, sendo admitido nas torres de arrefecimento da fábrica de papel. A nova instalação proposta pretende substituir a actual existente na ETAR em causa, em que a corrente de água que aquece as lamas, circula num circuito fechado entre um único permutador e uma caldeira, alimentada com o biogás que se produz no digestor anaeróbio, e que é responsável pelo controlo da temperatura da corrente de água. Pretende-se que a implementação deste novo método de aquecimento de lamas seja uma alternativa económica relativamente ao actual sistema, uma vez que vai substituir a corrente de biogás alimentada à caldeira podendo este recurso ser transformado em energia eléctrica e posteriormente comercializada. A análise financeira realizada ao projecto demonstrou que o projecto é rentável, uma vez que, a diferença entre todos ganhos e custos ao fim dos 10 anos de vida útil estimados é de cerca de 150 000,0 €. O período de retorno do investimento é alcançado no final dos primeiros 6 anos e a taxa interna de rentabilidade obtida foi de 36 %. Posteriormente incluiu-se neste estudo a possibilidade de tratamento das lamas geradas na fábrica da Portucel na ETAR da SimRia recorrendo a um terceiro digestor. Conclui-se que se trata duma opção vantajosa, uma vez que permite obter um caudal de biogás 44 m3/h, que convertido em potência permite obter 150 kW que poderá ser aproveitado para produção de energia ou comercializado gerando uma receita adicional de 130 000,0 €/ano para as entidades envolvidas.
Resumo:
Até 2020, a Europa terá de reduzir 20% das suas emissões de gases com efeito de estufa, 20% da produção de energia terá de ser proveniente de fontes renováveis e a eficiência energética deverá aumentar 20%. Estas são as metas apresentadas pela União Europeia, que ficaram conhecidas por 20/20/20 [1]. A Refinaria de Matosinhosé um complexo industrial que opera no sector da refinação e que apresenta preocupações ao nível da eficiência energética e dos aspectos ambientais subjacentes. No âmbito da racionalização energética das refinarias, a Galp Energia tem vindo a implementar um conjunto de medidas, adoptando as melhores tecnologias disponíveis com o objectivo de diminuir os consumos de energia, promover a eficiência energética e reduzir as emissões de dióxido de carbono. Para ir de encontro a estas medidas foi elaborado um estudo comparativo que permitiu à empresa definir as medidas consideradas prioritárias. Uma solução encontrada visa a execução de projectos que não requerem investimento e que têm acções imediatas, tais como o aumento da eficiência energética das fornalhas [1]. Este trabalho realizado na Galp Energia S.A. teve como objectivo principal a optimização energética da Unidade de Desalfatação do Propano da Fábrica de Óleos Base. Esta optimização baseou-se no aproveitamento energético da corrente de fundo da coluna de rectificação T2003C com uma potência calorífica de 2,79 Gcal/h. Após levantamento de todas as variáveis do processo relativas a esta unidade, especialmente a potência calorífica das correntes envolvidas chegou-se á conclusão que a fornalha H2101 poderá ser substituída por dois permutadores, reduzindo desta forma os consumos energéticos. Pois a corrente de fundo da coluna T2003 com uma potência calorífica 2,79 Gcal/h poderá permutar calor com a corrente da mistura asfalto com propano, fazendo com que esta atinja temperatura superior à obtida com a fornalha em funcionamento. A análise económica ao consumo e respectivo custo do fuelóleo na fornalha para o período de um ano foi realizada, sendo o seu custo de combustível de 611.396,00 €. O valor da aquisição dos permutadores é 86.355,97€, sendo rentável a alteração proposta neste projecto.
Resumo:
O trabalho apresentado explora o aproveitamento da energia solar para suprir as necessidades energéticas, tanto elétricas como térmicas, de uma habitação tipo 3, recorrendo ao uso de coletores solares, em que o fluido de trabalho é água. As necessidades elétricas serão supridas através da produção de energia com recurso a um ciclo de Rankine, em que fluido de trabalho é um frigorigénio aquecido através de um permutador cujo fluido quente será uma mistura, de água com anticongelante, aquecida pelo coletor solar. Por outro lado, as necessidades térmicas serão satisfeitas através do calor libertado no ciclo de Rankine. Na instalação solar estará integrado um acumulador térmico com apoio energético, caldeira elétrica, que funcionará nas situações em que coletor seja insuficiente para satisfazer as necessidades térmicas. No final será feita uma avaliação económica para que possa atestar a viabilidade económica do projeto, tendo em conta os seus custos totais versus as poupanças energéticas que este sistema origina.
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Com o aumento do preço da eletricidade e o fim dos combustíveis fósseis, associados à necessidade de Portugal reduzir a sua dependência energética do exterior, provoca a necessidade urgente de apostar nas energias renováveis. Perante este cenário, e assumindo que o custo da fatura energética, é para as empresas portuguesas um fator cada vez mais determinante para serem competitivas, devido aos aumentos consecutivos da energia nos últimos anos, bem como, a subida do imposto de valor acrescentado (IVA) de 6% para 23%. Outro aspeto importante é a eficiência energética como instrumento para reduzir os consumos de eletricidade. Com estas duas medidas: utilização de energias renováveis e o aumento da eficiência energética, são extremamente importantes para a redução da produção dos gases de efeito estufa (GEE). Consequentemente, as empresas terão de investir na produção da própria energia a partir de fontes renováveis, de modo a proporcionar um desenvolvimento sustentável, associado à redução da fatura energética. Esta dissertação propõe o dimensionamento de um sistema híbrido composto por tecnologia fotovoltaica e eólica, com e sem armazenamento de energia em baterias, adequado para reduzir uma parte dos consumos de uma empresa enquadrada no sector dos plásticos. O dimensionamento deste sistema, foi efetuado com recurso à caracterização dos consumos da empresa através da recolha de dados e leituras no local da instalação. Paralelamente, foi efetuada uma pesquisa em diversos fabricantes, de modo a identificar qual o sistema mais indicado a adotar, considerando painéis fotovoltaicos, turbinas eólicas, inversores e baterias. Com base nos dados recolhidos na empresa e referentes ao potencial eólico e solar para o distrito do Porto, em conjunto com as características técnicas dos equipamentos selecionados, foi delineado o sistema híbrido utilizando para o efeito um software de simulação e otimização de sistemas híbridos, denominado Hybrid Optimization Model for Eletric Renewable (HOMER). São apresentadas várias simulações para as diversas configurações escolhidas e estudos comparativos entre si, com o objetivo de reduzir o consumo de eletricidade da rede. Adicionalmente, foram realizadas duas configurações apenas com tecnologia fotovoltaica, de modo a efetuar uma análise comparativa entre um sistema híbrido e outro apenas com uma fonte renovável. Os resultados apresentados focaram-se no desempenho diário, mensal e anual, bem como, a produção individual de cada tecnologia evidenciada. Por último, procedeu-se ao estudo da viabilidade técnico-económica das configurações.
Resumo:
Os aproveitamentos geotérmicos têm vindo a aumentar significativamente em todo o mundo, sendo os Estados Unidos da América, o maior produtor desta energia proveniente do interior da Terra, com cerca de 3.187 MW de capacidade instalada. Portugal tem capacidade instalada total de 29 MW, no entanto no que se refere ao aproveitamento de “alta entalpia”, isto é, o aproveitamento geotérmico para produção elétrica, apenas se encontra no arquipélago dos Açores, na ilha de S. Miguel, onde estão instaladas e em funcionamento duas centrais geotérmicas com a potência total de 23 MW, com produção de energia de 185 GWh. Em Portugal Continental, não se consegue produzir energia elétrica devido às temperaturas existentes, restringindo esta utilização apenas ao aproveitamento de baixa entalpia (máximo de 76 ºC). Este aproveitamento normalmente é feito em cascata, segundo, predominando o aquecimento de águas sanitárias, climatização, e para termas, usando águas termominerais. Para a exploração deste recurso renovável, é necessário conhecer a hidrogeologia do país, e relacioná-la com a fracturação, e acidentes tectónicos. Portugal Continental, está divido em quatros partes distintas a nível hidrogeológico, o Maciço Antigo, a Orla Ocidental, a Bacia Tejo-Sado e a Orla Meridional. Qualquer aproveitamento geotérmico em Portugal terá de atender a estas características, potenciando também, novas explorações geotérmicas orientadas para as pessoas, respeitando os valores sociais, culturais e ambientais. Neste contexto, existem alguns complexos geotérmicos em funcionamento, outros abandonados, e muitos outros em estudo para uma breve aplicação. Um exemplo de sucesso no aproveitamento do calor geotérmico, é o complexo de Chaves, que foi evoluindo desde 1985, até aos dias de hoje, continuando em exploração e em expansão para um melhor servir da população local. A existência de dois furos, e brevemente dum terceiro, servem para o abastecimento duma piscina, dum hotel, das termas, e da balneoterapia. Devido à riqueza a nível das temperaturas, dos caudais, e ao nível das necessidades energéticas existentes, este complexo apresenta um tempo de retorno de investimento de cerca de 7 anos, o que é geralmente considerado para investimentos para fins públicos, como é o caso. No âmbito das investigações agora realizadas, foi constatado que estes projetos suportam a cobertura de alguma incerteza hidrogeológica, dada a importante procura existente.
Resumo:
Actualmente a humanidade depara-se com um dos grandes desafios que é o de efectivar a transição para um futuro sustentável. Logo, o sector da energia tem um papel chave neste processo de transição, com principal destaque para a energia solar, tendo em conta que é uma das fontes de energias renováveis mais promissoras, podendo no médiolongo prazo, tornar-se uma das principais fontes de energia no panorama energético dos países. A energia solar térmica de concentração (CSP), apesar não ser ainda conhecida em Portugal, possui um potencial relevante em regiões específicas do nosso território. Logo, o objectivo deste trabalho é efectuar uma análise detalhada dos sistemas solares de concentração para produção de energia eléctrica, abordando temas, tais como, o potencial da energia solar, a definição do processo de concentração solar, a descrição das tecnologias existentes, o estado da arte do CSP, mercado CSP no mundo, e por último, a análise da viabilidade técnico-económica da instalação de uma central tipo torre solar de 20 MW, em Portugal. Para que este objectivo fosse exequível, recorreu-se à utilização de um software de simulação termodinâmica de centrais CSP, denominado por Solar Advisor Model (SAM). O caso prático foi desenvolvido para a cidade de Faro, onde foram simuladas quatro configurações distintas para uma central do tipo torre solar de 20 MW. Foram apresentados resultados, focando a desempenho diário e anual da central. Foi efectuada uma análise para avaliação da influência da variabilidade dos parâmetros, localização geográfica, múltiplo solar, capacidade de armazenamento de calor e fracção de hibridização sobre o custo nivelado da energia (LCOE), o factor de capacidade e a produção anual de energia. Conjuntamente, é apresentada uma análise de sensibilidade, com a finalidade de averiguar quais os parâmetros que influenciam de forma mais predominante o valor do LCOE. Por último, é apresentada uma análise de viabilidade económica de um investimento deste tipo.
Resumo:
In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.
Resumo:
A presente dissertação tem como objetivo principal o estudo da importância que os sistemas de energias renováveis têm na obtenção da classe de eficiência energética em edifícios de habitação. Analisou-se assim, qual dos sistemas apresentados na legislação é mais vantajoso na relação entre a classe energética e o investimento necessário a efetuar. Como caso de estudo, utilizou-se um edifício de habitação em fase de projeto situada em ambiente urbano, a uma distância muito curta da costa marítima, no distrito do Porto. A primeira etapa da dissertação passou pela caracterização do edifício, determinando as suas necessidades nominais anuais de energia para aquecimento, para arrefecimento, para preparação de águas quentes sanitárias e por fim, as necessidades nominais de energia primária. Com isto, obteve-se a classe de eficiência energética da habitação sem a utilização de qualquer tipo de sistema de aproveitamento de energia renovável. Após esta obtenção, verificou-se que o edifício em análise já possuía uma classe muito eficiente, classe A, superior à classe mínima exigida pelo regulamento, B-. A desvantagem do edifício já possuir esta classe é que a implementação de sistemas de energia não iriam alterar drasticamente a classe, e por isso, não se iria conseguir retirar uma dedução correta de qual o melhor para promover a eficiência energética. De seguida, procedeu-se ao estudo dos sistemas de energia renovável, apresentando sistemas adequados para a habitação e calculando-se as novas classes de eficiência energética, com a utilização de cada sistema. Consecutivamente, começou-se a retirar ilações dos sistemas mais eficientes, ou seja, os sistemas que tem como função aquecer a moradia ou a função de preparar águas quentes sanitárias, pois, iriam mitigar necessidades nominais de energia, enquanto os sistemas de produção de energia elétrica apenas iriam contribuir para uma melhoria energética. Outra desvantagem verificada foi que, devido ao local onde a habitação se situa, não seria possível efetuar uma análise a todos os sistemas de aproveitamento de energia renovável. iv Por fim, efetuou-se uma análise dos investimentos necessários para a implementação dos sistemas de energias renováveis face às diminuições percentuais do rácio de eficiência energética. Posto isto, obteve-se os melhores sistemas a implementar na moradia, no ponto de vista de melhorar a classe de eficiência energética, seria uma caldeira a pellets com função de aquecimento e produção de águas quentes sanitárias, enquanto que, do ponto de vista financeiro obteve-se o sistema de aquecimento e produção de águas quentes sanitárias através de um recuperador de calor a lenha, que em ambos os casos a classe de eficiência energética passou de A para A+.
Resumo:
Mestrado em Engenharia Química. Ramo optimização energética na indústria química
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Mestrado em Engenharia Química. Ramo optimização energética na indústria química.
Resumo:
Cada vez mais a indústria tem vindo a sofrer algumas mudanças no seu processo produtivo. Hoje, mais que nunca, é preciso garantir que as instalações produtivas sejam o mais eficiente possível, procurando a racionalização de energia com um decrescimento dos custos. Deste modo o objectivo desta dissertação é o diagnóstico energético da fábrica de placas de borracha e a optimização do sector da pintura na empresa Monteiro Ribas. A realização de um diagnóstico energético, para a detecção de desperdícios de energia tem sido amplamente utilizada. A optimização irá prospectar potenciais de mudanças e aplicação de tecnologias de eficiência energética. Pretende-se deste modo travar o consumo energético sem que seja afectada a produção, já que a empresa é considerada consumidora intensiva de energia. Na empresa Monteiro Ribas há consumo de gás natural, de vapor e de energia eléctrica, sendo o vapor a forma de energia mais consumida, seguida da energia eléctrica e por fim, do gás natural nas proporções de 55%, 41% e 4%, respectivamente. A optimização feita permitiu estudar a influência de algumas variáveis, nos consumos anuais da energia, e assim apresentar propostas de melhoria. Uma das propostas analisadas foi a possibilidade de efectuar um isolamento térmico a algumas válvulas. Este isolamento conduziria a uma poupança de 79.263,4 kWh/ano. Propôs-se também a implementação de balastros electrónicos, que conduziria a uma diminuição em energia eléctrica de 29.509,92 kWh/ano. Relativamente às máquinas utilizadas no sector da pintura, verificou-se ser a estufa IRK 6, um dos equipamentos de grande consumo energético. Então analisou-se a influência da velocidade de circulação das placas de borracha através desta máquina, bem como a alteração da respectiva potência, pela diminuição do número de cassetes incorporados nesta estufa.
Resumo:
A verificação das Características Garantidas associadas aos equipamentos, em especial dos aerogeradores, incluídos no fornecimento de Parques Eólicos, reveste-se de particular importância devido, principalmente, ao grande volume de investimento em jogo, ao longo período necessário ao retorno do mesmo, à incerteza quanto à manutenção futura das actuais condições de remuneração da energia eléctrica produzida e ainda à falta de dados históricos sobre o período de vida útil esperado para os aerogeradores. Em face do exposto, é usual serem exigidas aos fornecedores, garantias do bom desempenho dos equipamentos, associadas a eventuais penalidades, quer para o período de garantia, quer para o restante período de vida útil, de modo a minimizar o risco associado ao investimento. No fornecimento de Parques Eólicos existem usualmente três tipos de garantias, nomeadamente, garantia de Curva de Potência dos aerogeradores, garantia de Disponibilidade dos equipamentos ou garantia de Produção de Energia. Estas poderão existir isoladamente ou em combinação, dependendo das condições contratuais acordadas entre o Adjudicatário e o Fornecedor. O grau de complexidade e/ou trabalho na implementação das mesmas é variável, não sendo possível afirmar qual delas é a mais conveniente para o Adjudicatário, nem qual a mais exacta em termos de resultados. Estas dúvidas surgem em consequência das dificuldades inerentes à recolha dos próprios dados e também da relativamente ampla margem de rearranjo dos resultados permitido pelas normas existentes, possibilitando a introdução de certo tipo de manipulações nos dados (rejeições e correlações), as quais podem afectar de forma considerável as incertezas dos resultados finais dos ensaios. Este trabalho, consistiu no desenvolvimento, execução, ensaio e implementação de uma ferramenta informática capaz de detectar de uma forma simples e expedita eventuais desvios à capacidade de produção esperada para os aerogeradores, em função do recurso verificado num dado período. Pretende ser uma ferramenta manuseável por qualquer operador de supervisão, com utilização para efeitos de reparações e correcção de defeitos, não constituindo contudo uma alternativa a outros processos abrangidos por normas, no caso de aplicação de penalidades. Para o seu funcionamento, são utilizados os dados mensais recolhidos pela torre meteorológica permanente instalada no parque e os dados de funcionamento dos aerogeradores, recolhidos pelo sistema SCADA. Estes são recolhidos remotamente sob a forma de tabelas e colocados numa directoria própria, na qual serão posteriormente lidos pela ferramenta.