84 resultados para data warehouse

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação incide sobre a problemática da construção de um data warehouse para a empresa AdClick que opera na área de marketing digital. O marketing digital é um tipo de marketing que utiliza os meios de comunicação digital, com a mesma finalidade do método tradicional que se traduz na divulgação de bens, negócios e serviços e a angariação de novos clientes. Existem diversas estratégias de marketing digital tendo em vista atingir tais objetivos, destacando-se o tráfego orgânico e tráfego pago. Onde o tráfego orgânico é caracterizado pelo desenvolvimento de ações de marketing que não envolvem quaisquer custos inerentes à divulgação e/ou angariação de potenciais clientes. Por sua vez o tráfego pago manifesta-se pela necessidade de investimento em campanhas capazes de impulsionar e atrair novos clientes. Inicialmente é feita uma abordagem do estado da arte sobre business intelligence e data warehousing, e apresentadas as suas principais vantagens as empresas. Os sistemas business intelligence são necessários, porque atualmente as empresas detêm elevados volumes de dados ricos em informação, que só serão devidamente explorados fazendo uso das potencialidades destes sistemas. Nesse sentido, o primeiro passo no desenvolvimento de um sistema business intelligence é concentrar todos os dados num sistema único integrado e capaz de dar apoio na tomada de decisões. É então aqui que encontramos a construção do data warehouse como o sistema único e ideal para este tipo de requisitos. Nesta dissertação foi elaborado o levantamento das fontes de dados que irão abastecer o data warehouse e iniciada a contextualização dos processos de negócio existentes na empresa. Após este momento deu-se início à construção do data warehouse, criação das dimensões e tabelas de factos e definição dos processos de extração e carregamento dos dados para o data warehouse. Assim como a criação das diversas views. Relativamente ao impacto que esta dissertação atingiu destacam-se as diversas vantagem a nível empresarial que a empresa parceira neste trabalho retira com a implementação do data warehouse e os processos de ETL para carregamento de todas as fontes de informação. Sendo que algumas vantagens são a centralização da informação, mais flexibilidade para os gestores na forma como acedem à informação. O tratamento dos dados de forma a ser possível a extração de informação a partir dos mesmos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na atualidade, existe uma quantidade de dados criados diariamente que ultrapassam em muito as mais otimistas espectativas estabelecidas na década anterior. Estes dados têm origens bastante diversas e apresentam-se sobre várias formas. Este novo conceito que dá pelo nome de Big Data está a colocar novos e rebuscados desafios ao seu armazenamento, tratamento e manipulação. Os tradicionais sistemas de armazenamento não se apresentam como a solução indicada para este problema. Estes desafios são alguns dos mais analisados e dissertados temas informáticos do momento. Várias tecnologias têm emergido com esta nova era, das quais se salienta um novo paradigma de armazenamento, o movimento NoSQL. Esta nova filosofia de armazenamento visa responder às necessidades de armazenamento e processamento destes volumosos e heterogéneos dados. Os armazéns de dados são um dos componentes mais importantes do âmbito Business Intelligence e são, maioritariamente, utilizados como uma ferramenta de apoio aos processos de tomada decisão, levados a cabo no dia-a-dia de uma organização. A sua componente histórica implica que grandes volumes de dados sejam armazenados, tratados e analisados tendo por base os seus repositórios. Algumas organizações começam a ter problemas para gerir e armazenar estes grandes volumes de informação. Esse facto deve-se, em grande parte, à estrutura de armazenamento que lhes serve de base. Os sistemas de gestão de bases de dados relacionais são, há algumas décadas, considerados como o método primordial de armazenamento de informação num armazém de dados. De facto, estes sistemas começam a não se mostrar capazes de armazenar e gerir os dados operacionais das organizações, sendo consequentemente cada vez menos recomendada a sua utilização em armazéns de dados. É intrinsecamente interessante o pensamento de que as bases de dados relacionais começam a perder a luta contra o volume de dados, numa altura em que um novo paradigma de armazenamento surge, exatamente com o intuito de dominar o grande volume inerente aos dados Big Data. Ainda é mais interessante o pensamento de que, possivelmente, estes novos sistemas NoSQL podem trazer vantagens para o mundo dos armazéns de dados. Assim, neste trabalho de mestrado, irá ser estudada a viabilidade e as implicações da adoção de bases de dados NoSQL, no contexto de armazéns de dados, em comparação com a abordagem tradicional, implementada sobre sistemas relacionais. Para alcançar esta tarefa, vários estudos foram operados tendo por base o sistema relacional SQL Server 2014 e os sistemas NoSQL, MongoDB e Cassandra. Várias etapas do processo de desenho e implementação de um armazém de dados foram comparadas entre os três sistemas, sendo que três armazéns de dados distintos foram criados tendo por base cada um dos sistemas. Toda a investigação realizada neste trabalho culmina no confronto da performance de consultas, realizadas nos três sistemas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente documento de dissertação retrata o desenvolvimento do projeto PDS-Portal Institucional cujo cerne é um sistema para recolha, armazenamento e análise de dados (plataforma de Business Intelligence). Este portal está enquadrado na área da saúde e é uma peça fundamental no sistema da Plataforma de dados da Saúde, que é constituído por quatro portais distintos. Esta plataforma tem como base um sistema totalmente centrado no utente, que agrega dados de saúde dos utentes e distribui pelos diversos intervenientes: utente, profissionais de saúde nacionais e internacionais e organizações de saúde. O objetivo principal deste projeto é o desenvolvimento do PDS-Portal Institucional, recorrendo a uma plataforma de Business Intelligence, com o intuito de potenciar os utilizadores de uma ferramenta analítica para análise de dados. Estando a informação armazenada em dois dos portais da Plataforma de dados da Saúde (PDS-Portal Utente e PDS-Portal Profissional), é necessário modular um armazém de dados que agregue a informação de ambos e, através do PDS-PI, distribua um conjunto de análises ao utilizador final. Para tal este sistema comtempla um mecanismo totalmente automatizado para extração, tratamento e carregamento de dados para o armazém central, assim como uma plataforma de BI que disponibiliza os dados armazenados sobre a forma de análises específicas. Esta plataforma permite uma evolução constante e é extremamente flexível, pois fornece um mecanismo de gestão de utilizadores e perfis, assim como capacita o utilizador de um ambiente Web para análise de dados, permitindo a partilha e acesso a partir de dispositivos móveis. Após a implementação deste sistema foi possível explorar os dados e tirar diversas conclusões que são de extrema importância tanto para a evolução da PDS como para os métodos de praticar os cuidados de saúde em Portugal. Por fim são identificados alguns pontos de melhoria do sistema atual e delineada uma perspetiva de evolução futura. É certo que a partir do momento que este projeto seja lançado para produção, novas oportunidades surgirão e o contributo dos utilizadores será útil para evoluir o sistema progressivamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vivemos cada vez mais numa era de crescentes avanços tecnológicos em diversas áreas. O que há uns anos atrás era considerado como praticamente impossível, em muitos dos casos, já se tornou realidade. Todos usamos tecnologias como, por exemplo, a Internet, Smartphones e GPSs de uma forma natural. Esta proliferação da tecnologia permitiu tanto ao cidadão comum como a organizações a sua utilização de uma forma cada vez mais criativa e simples de utilizar. Além disso, a cada dia que passa surgem novos negócios e startups, o que demonstra o dinamismo que este crescimento veio trazer para a indústria. A presente dissertação incide sobre duas áreas em forte crescimento: Reconhecimento Facial e Business Intelligence (BI), assim como a respetiva combinação das duas com o objetivo de ser criado um novo módulo para um produto já existente. Tratando-se de duas áreas distintas, é primeiramente feito um estudo sobre cada uma delas. A área de Business Intelligence é vocacionada para organizações e trata da recolha de informação sobre o negócio de determinada empresa, seguindo-se de uma posterior análise. A grande finalidade da área de Business Intelligence é servir como forma de apoio ao processo de tomada de decisão por parte dos analistas e gestores destas organizações. O Reconhecimento Facial, por sua vez, encontra-se mais presente na sociedade. Tendo surgido no passado através da ficção científica, cada vez mais empresas implementam esta tecnologia que tem evoluído ao longo dos anos, chegando mesmo a ser usada pelo consumidor final, como por exemplo em Smartphones. As suas aplicações são, portanto, bastante diversas, desde soluções de segurança até simples entretenimento. Para estas duas áreas será assim feito um estudo com base numa pesquisa de publicações de autores da respetiva área. Desde os cenários de utilização, até aspetos mais específicos de cada uma destas áreas, será assim transmitido este conhecimento para o leitor, o que permitirá uma maior compreensão por parte deste nos aspetos relativos ao desenvolvimento da solução. Com o estudo destas duas áreas efetuado, é então feita uma contextualização do problema em relação à área de atuação da empresa e quais as abordagens possíveis. É também descrito todo o processo de análise e conceção, assim como o próprio desenvolvimento numa vertente mais técnica da solução implementada. Por fim, são apresentados alguns exemplos de resultados obtidos já após a implementação da solução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

É possível assistir nos dias de hoje, a um processo tecnológico evolutivo acentuado por toda a parte do globo. No caso das empresas, quer as pequenas, médias ou de grandes dimensões, estão cada vez mais dependentes dos sistemas informatizados para realizar os seus processos de negócio, e consequentemente à geração de informação referente aos negócios e onde, muitas das vezes, os dados não têm qualquer relacionamento entre si. A maioria dos sistemas convencionais informáticos não são projetados para gerir e armazenar informações estratégicas, impossibilitando assim que esta sirva de apoio como recurso estratégico. Portanto, as decisões são tomadas com base na experiência dos administradores, quando poderiam serem baseadas em factos históricos armazenados pelos diversos sistemas. Genericamente, as organizações possuem muitos dados, mas na maioria dos casos extraem pouca informação, o que é um problema em termos de mercados competitivos. Como as organizações procuram evoluir e superar a concorrência nas tomadas de decisão, surge neste contexto o termo Business Intelligence(BI). A GisGeo Information Systems é uma empresa que desenvolve software baseado em SIG (sistemas de informação geográfica) recorrendo a uma filosofia de ferramentas open-source. O seu principal produto baseia-se na localização geográfica dos vários tipos de viaturas, na recolha de dados, e consequentemente a sua análise (quilómetros percorridos, duração de uma viagem entre dois pontos definidos, consumo de combustível, etc.). Neste âmbito surge o tema deste projeto que tem objetivo de dar uma perspetiva diferente aos dados existentes, cruzando os conceitos BI com o sistema implementado na empresa de acordo com a sua filosofia. Neste projeto são abordados alguns dos conceitos mais importantes adjacentes a BI como, por exemplo, modelo dimensional, data Warehouse, o processo ETL e OLAP, seguindo a metodologia de Ralph Kimball. São também estudadas algumas das principais ferramentas open-source existentes no mercado, assim como quais as suas vantagens/desvantagens relativamente entre elas. Em conclusão, é então apresentada a solução desenvolvida de acordo com os critérios enumerados pela empresa como prova de conceito da aplicabilidade da área Business Intelligence ao ramo de Sistemas de informação Geográfica (SIG), recorrendo a uma ferramenta open-source que suporte visualização dos dados através de dashboards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orientador Prof. Dr. João Domingues Costa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revista Fiscal Maio 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.