4 resultados para compliance in VET

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Acute respiratory infections are usual in children under three years old occurring in upper respiratory tract, having an impact on child and caregiver’s quality of life predisposing to otitis media or bronchiolitis. There are few valid and reliable measures to determine the child’s respiratory condition and to guide the physiotherapy intervention. Aim: To assess the intra and inter rater reliability of nasal auscultation, to analyze the relation between sounds’ classification and middle ear’s pressure and compliance as well as with the Clinical Severity Score. Methods: A cross-sectional observational study was composed by 125 nursery children aged up to three years old. Tympanometry, pulmonary and nasal auscultation and application of Clinical Severity Score were performed to each child. Nasal auscultation sounds’ were recorded and sent to 3 blinded experts, that classified, as “obstructed” and “unobstructed”, with a 48 hours interval, in order to analyze inter and intra rater reliability. Results: Nasal auscultation revealed a substantial inter and intra rater reliability (=0,749 and evaluator A - K= 0,691; evaluator B - K= 0,605 and evaluator C - K= 0,724, respectively). Both ears’ pressure was significantly lower in children with an "unobstructed" nasal sound when compared with an “obstructed” nasal sound (t=-3,599, p<0,001 in left ear; t=-2,258, p=0,026 in right ear). Compliance in both ears was significantly lower in children with an "obstructed" nasal sound when compared with “unobstructed” nasal sound (t=-2,728, p=0,007 in left ear; t=-3,830, p<0,001 in right ear). There was a statistically significant association between sounds’ classification and tympanograms types in both ear’s (=11,437, p=0,003 in left ear; =13,535, p=0,001 in right ear). There was a trend to children with an "unobstructed" nasal sound that had a lower clinical severity score when compared with “obstructed” children. Conclusion: It was observed a good intra and substantial inter reliability for nasal auscultation. Nasal auscultation sounds’ classification was related to middle ears’ pressure and compliance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado em Solicitaria

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Because of the scientific evidence showing that arsenic (As), cadmium (Cd), and nickel (Ni) are human genotoxic carcinogens, the European Union (EU) recently set target values for metal concentration in ambient air (As: 6 ng/m3, Cd: 5 ng/m3, Ni: 20 ng/m3). The aim of our study was to determine the concentration levels of these trace elements in Porto Metropolitan Area (PMA) in order to assess whether compliance was occurring with these new EU air quality standards. Fine (PM2.5) and inhalable (PM10) air particles were collected from October 2011 to July 2012 at two different (urban and suburban) locations in PMA. Samples were analyzed for trace elements content by inductively coupled plasma–mass spectrometry (ICP-MS). The study focused on determination of differences in trace elements concentration between the two sites, and between PM2.5 and PM10, in order to gather information regarding emission sources. Except for chromium (Cr), the concentration of all trace elements was higher at the urban site. However, results for As, Cd, Ni, and lead (Pb) were well below the EU limit/target values (As: 1.49 ± 0.71 ng/m3; Cd: 1.67 ± 0.92 ng/m3; Ni: 3.43 ± 3.23 ng/m3; Pb: 17.1 ± 10.1 ng/m3) in the worst-case scenario. Arsenic, Cd, Ni, Pb, antimony (Sb), selenium (Se), vanadium (V), and zinc (Zn) were predominantly associated to PM2.5, indicating that anthropogenic sources such as industry and road traffic are the main source of these elements. High enrichment factors (EF > 100) were obtained for As, Cd, Pb, Sb, Se, and Zn, further confirming their anthropogenic origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.