20 resultados para combinatorial protocol in multiple linear regression
em Instituto Politécnico do Porto, Portugal
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
Dairy foods comprise a range of products with varying nutritional content. The intake of dairy products (DPs) has been shown to have beneficial effects on body weight and body fat. This study aimed to examine the independent association between DP intake, body mass index (BMI), and percentage body fat (%BF) in adolescents. A cross-sectional, school-based study was conducted with 1,001 adolescents (418 boys), ages 15–18 years, from the Azorean Archipelago, Portugal. Anthropometric measurements were recorded (weight and height), and %BF was assessed using bioelectric impedance analysis. Adolescent food intake was measured using a self-administered, semiquantitative food frequency questionnaire. Data were analyzed separately for girls and boys, and separate multiple linear regression analysis was used to estimate the association between total DP, milk, yogurt, and cheese intake, BMI, and %BF, adjusting for potential confounders. For boys and girls, respectively, total DP consumption was 2.6 ± 1.9 and 2.9 ± 2.5 servings/day (P = 0.004), while milk consumption was 1.7 ± 1.4 and 2.0 ± 1.7 servings/day (P = 0.001), yogurt consumption was 0.5 ± 0.6 and 0.4 ± 0.7 servings/day (P = 0.247), and cheese consumption was 0.4 ± 0.6 and 0.5 ± 0.8 servings/day (P = 0.081). After adjusting for age, birth weight, energy intake, protein, total fat, sugar, dietary fiber, total calcium intake, low-energy reporters, parental education, pubertal stage, and physical activity, only milk intake was negatively associated with BMI and %BF in girls (respectively, girls: β = −0.167, P = 0.013; boys: β = −0.019, P = 0.824 and girls: β = −0.143, P = 0.030; boys: β = −0.051, P = 0.548). Conclusion: We found an inverse association between milk intake and both BMI and %BF only in girls.
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
Este trabalho apresenta o estudo das leis de propagação das velocidades de vibração resultantes do uso de explosivo em diferentes maciços. Foram efectuados estudos para três tipos de maciços diferentes, granito, quartzito e calcário. Efectuaram-se campanhas de monitorização e registo dos dados em cada uma das situações. Caracterizando e utilizando duas leis de propagação de velocidades no maciço, a de Johnson e Langefors, calculou-se as suas variáveis por método estatístico de regressões lineares múltiplas. Com a obtenção das variáveis fizeram-se estudos de previsão dos valores de vibração a obter utilizando a carga explosiva aplicada nos desmontes. Através dos valores de vibração obtidos em cada pega de fogo para cada tipo de maciço comparou-se quais das duas leis apresentam o valor de velocidade de vibração menor desviado do real. Conforme ficou verificado neste estudo, a equação de Langefors garante uma mais-valia da sua aplicação na previsão das velocidades de vibração pois joga favoravelmente a nível da segurança assim como apresenta um menor desvio face à equação de Johnson quando comparada com o valor real de vibração obtido. Com isto o método de utilização de regressões lineares múltiplas como cálculo dos efeitos vibratórios é extremamente vantajoso a nível de prevenção de danos e cálculo de velocidades de vibração inferiores ao imposto pela Norma.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação de Adalmiro Álvaro Malheiro de Castro Andrade Pereira
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Auditoria, sob a orientação de Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação do Dr. Luís Pereira Gomes
Resumo:
Esta dissertação visa o estudo da influência da cultura organizacional no desempenho financeiro das organizações. Nesse contexto, procuramos analisar qual a cultura predominante das organizações, de forma a estabelecer posteriormente uma relação entre a cultura e o desempenho das empresas. Para isso a metodologia seguida foi a realização de um inquérito por questionário a empresas da região Douro de Portugal no sentido de obter, através de uma adaptação ao instrumento desenvolvido por Cameron e Quinn (2006), a cultura predominante da empresa, os indicadores financeiros necessários ao nosso estudo assim como, uma caracterização da amostra recolhida. Para análise e tratamento dos dados recolhidos através do inquérito por questionário foi utilizada a ferramenta estatística SPSS que nos permitiu retirar ilações sobre as características da amostra, assim como sobre a relação existente entre cultura organizacional e desempenho financeiro, esta relação foi avaliada através de testes de correlação e regressão linear múltipla. Os resultados sugerem que as variáveis culturais, cultura adocrática, mercado e hierárquica e o número de colaboradores explicam em cerca de 20% o resultado líquido ajustado. Também se verificou um efeito positivo da cultura adocrática e de mercado, embora o efeito da cultura de mercado seja mais forte que o da adocrática, e o efeito negativo da cultura hierárquica, ainda que estes resultados não sejam estatisticamente significativos. Não existem evidências que os tipos de cultura analisados (adocrática, de mercado e hierárquica) estão significativamente associados ao desempenho financeiro, avaliado pelos resultados líquidos ajustados, das empresas analisadas, quer pelos testes de correlação quer pelos resultados da estimação do modelo de regressão linear múltipla.
Resumo:
Durante as últimas décadas observou-se o crescimento da importância das avaliações fornecidas pelas agências de rating, sendo este um fator decisivo na tomada de decisão dos investidores. Também os emitentes de dívida são largamente afetados pelas alterações das classificações atribuídas por estas agências. Esta investigação pretende, por um lado, compreender se estas agências têm poder para conseguirem influenciar a evolução da dívida pública e qual o seu papel no mercado financeiro. Por outro, pretende compreender quais os fatores determinantes da dívida pública portuguesa, bem como a realização de uma análise por percentis com o objetivo de lhe atribuir um rating. Para a análise dos fatores que poderão influenciar a dívida pública, a metodologia utilizada é uma regressão linear múltipla estimada através do Método dos Mínimos Quadrados (Ordinary Least Squares – OLS), em que num cenário inicial era composta por onze variáveis independentes, sendo a dívida pública a variável dependente, para um período compreendido entre 1996 e 2013. Foram realizados vários testes ao modelo inicial, com o objetivo de encontrar um modelo que fosse o mais explicativo possível. Conseguimos ainda identificar uma relação inversa entre o rating atribuído por estas agências e a evolução da dívida pública, no sentido em que para períodos em que o rating desce, o crescimento da dívida é mais acentuado. Não nos foi, no entanto, possível atribuir um rating à dívida pública através de uma análise de percentis.
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.