3 resultados para brachial plexus blockade
em Instituto Politécnico do Porto, Portugal
Resumo:
A transtirretina (TTR) é uma proteína plasmática constituída por quatro subunidades idênticas de aproximadamente 14KDa e de massa molecular de 55 KDa (Blake et al., 1978). A TTR é responsável pelo transporte de tiroxina (T4) (Andrea et al., 1980) e retinol (vitamina A), neste último tipo de transporte através da ligação à proteina de ligação ao retinol (RBP) (Kanai et al., 1968). É sintetizada principalmente pelo fígado e secretada para o sangue (Murakami et al., 1987) e também sintetizada pelas células epiteliais do plexo coróide e secretada para o líquido cefaloraquidiano (LCR) (Aleshire et al., 1983). Existem outros locais que expressam TTR mas em menor quantidade, nomeadamente: a retina do olho (Martone et al., 1988), o pâncreas (Kato et al., 1985), o saco vitelino visceral (Soprano et al., 1986) o intestino (Loughna et al., 1995); o estômago, coração, músculo e baço (Soprano et al., 1985). A TTR é uma proteína, do ponto de vista filogenético, extremamente conservada o que já de si é um indicador da sua importância biológica (Richardson, 2009) O objectivo deste trabalho foi avaliar a expressão de transtirretina ao longo do sistema gastrointestinal do murganho, nos seguintes órgãos esófago, estômago, duodeno, cólon e também bexiga, com cerca de 3 meses de idade. O segundo objectivo foi identificar as células responsáveis por essa expressão, nos órgãos em estudo. Foi possível verificar que apenas o estômago apresenta valores de expressão normalizada de TTR diferente de zero, expressão essa muito inferior à do fígado, tal como se esperava. Por imunohistoquímica/imunofluorescência foi possível determinar que as células que expressam TTR são pouco abundantes e estão presentes na região glandular do estômago do murganho e também do humano. Para além disto, verificou-se que a TTR co-localiza com somatostatina e que as células que sintetizam TTR correspondem às células D, responsáveis pela secreção de somatostatina
Resumo:
A acetilcolina (ACh) é o neurotransmissor mais importante no controlo da motilidade gastrointestinal. A libertação de ACh dos neurónios entéricos é regulada por receptores neuronais específicos (De Man et al., 2003). Estudos prévios demonstraram que a adenosina exerce um papel duplo na libertação de ACh dos neurónios entéricos através da activação dos receptores inibitórios A1 e facilitatórios A2A (Duarte-Araújo et al., 2004). O potencial terapêutico dos compostos relacionados com a adenosina no controlo da motilidade e da inflamação intestinal, levou-nos a investigar o papel dos receptores com baixa afinidade para a adenosina, A2B e A3, na libertação de acetilcolina induzida por estimulação eléctrica nos neurónios mioentéricos. Estudos de imunolocalização mostraram que os receptores A2B exibem um padrão de distribuição semelhante ao do marcador de células gliais (GFAP). No que respeita aos receptores A1 e A3, estes encontram-se distribuídos principalmente nos corpos celulares dos neurónios ganglionares mioentéricos, enquanto os receptores A2A estão localizados predominantemente nos terminais nervosos colinérgicos. Neste trabalho mostrou-se que a modulação da libertação de ACh-[3H] (usando os antagonistas selectivos DPCPX, ZM241385 e MRS1191) é balanceada através da activação tónica dos receptores inibitórios (A1) e facilitatórios (A2A e A3) pela adenosina endógena. O antagonista selectivo dos receptores A2B, PSB603, não foi capaz de modificar o efeito inibitório da NECA (análogo da adenosina com afinidade para receptores A2). O efeito facilitatório do agonista dos receptores A3, 2-Cl-IB MECA (1-10 nM), foi atenuado pelo MRS1191 e pelo ZM241385, os quais bloqueiam respectivamente os receptores A3 e A2A. Contrariamente à 2-Cl-IB MECA, a activação dos receptores A2A pelo CGS21680C, atenuou a facilitação da libertação de ACh induzida pela activação dos receptores nicotínicos numa situação em que a geração do potencial de acção neuronal foi bloqueada pela tetrodotoxina. A localização diferencial dos receptores excitatórios A3 e A2A ao longo dos neurónios mioentéricos explica porque razão a estimulação dos receptores A3 (com 2-Cl-IB MECA) localizados nos corpos celulares dos neurónios mioentéricos exerce um efeito sinérgico com os receptores facilitatórios A2A dos terminais nervosos no sentido de aumentarem a libertação de ACh. Os resultados apresentados consolidam e expandem a compreensão actual da distribuição e função dos receptores da adenosina no plexo mioentérico do íleo de rato, e devem ser tidos em consideração para a interpretação de dados relativos às implicações fisiopatológicas da adenosina nos transtornos da motilidade intestinal.
Resumo:
Background: Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results: Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2- octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions: Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors.