114 resultados para Worst Case Execution Time (WCET)

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing realtime guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution Time (WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the WCET analysis a challenging problem in a typical COTS-based multicore system. Then, we propose and prove, a mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled on different cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive and preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delay but its schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delay, but benefits from a higher flexibility in the scheduling decisions. The time-delay involved by task preemptions is a major source of pessimism in the analysis of the task Worst-Case Execution Time (WCET) in real-time systems. Preemptive scheduling policies including non-preemptive regions are a hybrid solution between non-preemptive and fully preemptive scheduling paradigms, which enables to conjugate both world's benefits. In this paper, we exploit the connection between the progression of a task in its operations, and the knowledge of the preemption delays as a function of its progression. The pessimism in the preemption delay estimation is then reduced in comparison to state of the art methods, due to the increase in information available in the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demands for functionality enhancements, cost reductions and power savings clearly suggest the introduction of multiand many-core platforms in real-time embedded systems. However, when compared to uni-core platforms, the manycores experience additional problems, namely the lack of scalable coherence mechanisms and the necessity to perform migrations. These problems have to be addressed before such systems can be considered for integration into the realtime embedded domain. We have devised several agreement protocols which solve some of the aforementioned issues. The protocols allow the applications to plan and organise their future executions both temporally and spatially (i.e. when and where the next job will be executed). Decisions can be driven by several factors, e.g. load balancing, energy savings and thermal issues. All presented protocols are analytically described, with the particular emphasis on their respective real-time behaviours and worst-case performance. The underlying assumptions are based on the multi-kernel model and the message-passing paradigm, which constitutes the communication between the interacting instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider the problem of scheduling n sporadic tasks so as to meet deadlines on m identical processors. A task is characterised by its minimum interarrival time and its worst-case execution time. Tasks are preemptible and may migrate between processors. We propose an algorithm with limited migration, configurable for a utilisation bound of 88% with few preemptions (and arbitrarily close to 100% with more preemptions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Many-core” systems based on the Network-on- Chip (NoC) architecture have brought into the fore-front various opportunities and challenges for the deployment of real-time systems. Such real-time systems need timing guarantees to be fulfilled. Therefore, calculating upper-bounds on the end-to-end communication delay between system components is of primary interest. In this work, we identify the limitations of an existing approach proposed by [1] and propose different techniques to overcome these limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contention on the memory bus in COTS based multicore systems is becoming a major determining factor of the execution time of a task. Analyzing this extra execution time is non-trivial because (i) bus arbitration protocols in such systems are often undocumented and (ii) the times when the memory bus is requested to be used are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. We present a method for finding an upper bound on the extra execution time of a task due to contention on the memory bus in COTS based multicore systems. This method makes no assumptions on the bus arbitration protocol (other than assuming that it is work-conserving).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

27th Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund, Sweden.