33 resultados para Virtual Reality Learning Environment
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.
Resumo:
In these days the learning experience is no longer confined within the four walls of a classroom. Computers and primarily the internet have broadened this horizon by creating a way of delivering education that is known as e-learning. In the meantime, the internet, or more precisely, the Web is heading towards a new paradigm where the user is no longer just a consumer of information and becomes an active part in the communication. This two-way channel where the user takes the role of the producer of content triggered the appearance of new types of services such as Social Networks, Blogs and Wikis. To seize this second generation of communities and services, educational vendors are willing to develop e-learning systems focused on the new and emergent users needs. This paper describes the analysis and specification of an e-learning environment at our School (ESEIG) towards this new Web generation, called PEACE – Project for ESEIG Academic Environment. This new model relies on the integration of several services controlled by teachers and students such as social networks, repositories libraries, e-portfolios and e-conference sytems, intelligent tutors, recommendation systems, automatic evaluators, virtual classrooms and 3D avatars.
Resumo:
In the context of the Bologna Declaration a change is taking place in the teaching/learning paradigm. From teaching-centered education, which emphasizes the acquisition and transmission of knowledge, we now speak of learning-centered education, which is more demanding for students. This paradigm promotes a continuum of lifelong learning, where the individual needs to be able to handle knowledge, to select what is appropriate for a particular context, to learn permanently and to understand how to learn in new and rapidly changing situations. One attempt to face these challenges has been the experience of ISCAP regarding the teaching/learning of accounting in the course Managerial Simulation. This paper describes the process of teaching, learning and assessment in an action-based learning environment. After a brief general framework that focuses on education objectives, we report the strengths and limitations of this teaching/learning tool. We conclude with some lessons from the implementation of the project.
Resumo:
Project LIHE: the Portuguese Case. ESREA Fourth Access Network Conference – “Equity, Access and Participation: Research, Policy and Practice”. Edinburgh (Scotland), 11 – 13 December, 2003.
Resumo:
Virtual Reality (VR) has grown to become state-of-theart technology in many business- and consumer oriented E-Commerce applications. One of the major design challenges of VR environments is the placement of the rendering process. The rendering process converts the abstract description of a scene as contained in an object database to an image. This process is usually done at the client side like in VRML [1] a technology that requires the client’s computational power for smooth rendering. The vision of VR is also strongly connected to the issue of Quality of Service (QoS) as the perceived realism is subject to an interactive frame rate ranging from 10 to 30 frames-per-second (fps), real-time feedback mechanisms and realistic image quality. These requirements overwhelm traditional home computers or even high sophisticated graphical workstations over their limits. Our work therefore introduces an approach for a distributed rendering architecture that gracefully balances the workload between the client and a clusterbased server. We believe that a distributed rendering approach as described in this paper has three major benefits: It reduces the clients workload, it decreases the network traffic and it allows to re-use already rendered scenes.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
This paper presents a framework for a robotic production line simulation learning environment using Autonomous Ground Vehicles (AGV). An eLearning platform is used as interface with the simulator. The objective is to introduce students to the production robotics area using a familiar tool, an eLearning platform, and a framework that simulates a production line using AGVs. This framework allows students to learn about robotics but also about several areas of industrial management engineering without requiring an extensive prior knowledge on the robotics area. The robotic production line simulation learning environment simulates a production environment using AGVs to transport materials to and from the production line. The simulator allows students to validate the AGV dynamics and provides information about the whole materials supplying system which includes: supply times, route optimization and inventory management. The students are required to address several topics such as: sensors, actuators, controllers and an high level management and optimization software. This simulator was developed with a known open source tool from robotics community: Player/Stage. This tool was extended with several add-ons so that students can be able to interact with a complex simulation environment. These add-ons include an abstraction communication layer that performs events provided by the database server which is programmed by the students. An eLearning platform is used as interface between the students and the simulator. The students can visualize the effects of their instructions/programming in the simulator that they can access via the eLearning platform. The proposed framework aims to allow students from different backgrounds to fully experience robotics in practice by suppressing the huge gap between theory and practice that exists in robotics. Using an eLearning platform eliminates installation problems that can occur from different computers software distribution and makes the simulator accessible by all students at school and at home.
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
A forma como aprendemos depende do contexto tecnológico e sociocultural que nos rodeia, actualmente a inclusão de tecnologia recente na sala de aula não é mais considerada opcional, mas sim uma necessidade pois a forma como o aluno aprende está em constante evolução. Tendo em atenção esta necessidade, foi desenvolvido no decorrer desta tese um simulador em realidade virtual que utiliza comandos/interfaces hápticos. O objectivo deste simulador é ensinar conceitos de física de forma interactiva. Os dispositivos hápticos permitem adicionar o sentido táctil ou de toque à interacção entre homem e máquina, permitindo assim aceder a novas sensações relativas ao seu uso nomeadamente com objectivos de aprendizagem. O simulador desenvolvido designado por “Forces of Physics” aborda três tipos de forças da física: forças de atrito, forças gravitacionais e forças aerodinâmicas. Cada tipo de força corresponde a um módulo do simulador contendo uma simulação individual em que são explicados conceitos específicos dessa força num ambiente visual estimulante e com uma interacção mais realista devido à inclusão do dispositivo háptico Novint Falcon. O simulador foi apresentado a vários utilizadores bem como á comunidade científica através de apresentações em conferências. A avaliação foi realizada com recurso a um questionário com dez perguntas, cinco de sobre aprendizagem e cinco sobre a utilização, tendo sido preenchido por 14 utilizadores. O simulador obteve uma boa recepção por parte dos utilizadores, tendo vários utilizadores expressado as suas opiniões sobre estado actual do simulador, do futuro do mesmo e da respectiva validade para uso na sala de aula.
Resumo:
The confluence of education with the evolution of technology boosted the paradigm shift of the face-to-face learning to distance learning. In this scenario e-Learning plays an essential role as a facilitator of the teaching/learning process. However new demands associated with the new Web paradigm require that existent e-Learning environments characterized mostly by monolithic systems begin interacting with new specialized services. In this decentralized scenario the definition of a strategy of interoperability is the cornerstone to ensure the standardization communication among systems. This paper presents a definition of an interoperability strategy for an e-Learning environment at our School (ESEIG) called PEACE – Project for ESEIG Academic Content Environment. This new interoperability model relies on the application of several coordination and integration standards on several services, controlled by teachers and students, and included in the PEACE environment such as social networks, repositories, libraries, e-portfolios, intelligent tutors, recommendation systems and virtual classrooms.
Resumo:
Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.
Resumo:
Nowadays, with the use of technology and the Internet, education is undergoing significant changes, contemplating new ways of teaching and learning. One of the widely methods of teaching used to promote knowledge, consists in the use of virtual environments available in various formats, taking as example the teaching-learning platforms, which are available online. The Internet access and use of Laptops have created the technological conditions for teachers and students can benefit from the diversity of online information, communication, collaboration and sharing with others. The integration of Internet services in the teaching practices can provide thematic, social and digital enrichment for the agents involved. In this paper we will talk about the advantages of LMS (Learning Management Systems) such as Moodle, to support the presential lectures in higher education. We also will analyse its implications for student support and online interaction, leading educational agents to a mixing of different learning environments, where they can combine face-to-face instruction with computer-mediated instruction, blended-learning, and increases the options for better quality and quantity of human interaction in a learning environment. We also will present some tools traditionally used in online assessment and that are part of the functionalities of Moodle. These tools can provide interesting alternatives to promote a more significant learning and contribute to the development of flexible and customized models of an evaluation which we want to be more efficient.
Resumo:
O objectivo da Realidade Virtual é simples de entender mas muito difícil de implementar: criar ambientes completamente indiferenciáveis do mundo real com os quais se possa interagir de um modo natural. Desde a criação do Sensorama por Morton Heiling em 1962, passando pela difusão do conceito pelo público geral na década de 90 até os dias de hoje, a evolução da Realidade Virtual tem sido constante. Este conjunto de tecnologias tem estado envolvido por uma certa descrença por parte da sociedade, motivada pelas grandes expectativas que lhe foram atribuídas e pelo estado de desenvolvimento do hardware aquando do seu auge. No entanto, actualmente assiste-se a um ressurgimento do seu interesse no público geral com a introdução de imagem estereoscópica no cinema ou o sucesso dos controladores da consola Nintendo Wii. Hoje em dia as suas aplicações são muito variadas: desde o treino de pilotos de avião ao tratamento de fobias, passando pela industria do entretenimento e a visita virtual de locais com interesse histórico ou turístico. O objectivo desta tese de mestrado é explorar uma área que ainda não tem sido muito abrangida pela Realidade Virtual e que cobre também aspectos educacionais e lúdicos de modo a ser um factor de atracção para os estudantes do ensino secundário: a simulação de instrumentos musicais. Para tal foi implementado um sistema capaz de simular instrumentos musicais de percussão (uma bateria) utilizando imagem estereoscópica, som posicional e interfaces com o utilizador realistas. Os resultados obtidos nas sessões de avaliação efectuadas por alunos recentemente ingressados no ensino superior demonstram que o sistema desenvolvido, bem como a inovação em interfaces do utilizador com os dispositivos electrónicos de uma forma geral, constituem um meio efectivo na sua motivação para a escolha de um curso na área da engenharia.
Resumo:
One of the most difficult issues of e-Learning is the students’ assessment. Being this an outstanding task regarding theoretical topics, it becomes even more challenging when the topics under evaluation are practical. ISCAP’s Information Systems Department is composed of about twenty teachers who have been for several years using an e-learning environment (at the moment Moodle 2.3) combined with traditional assessment. They are now planning and implementing a new e-learning assessment strategy. This effort was undertaken in order to evaluate a practical topic (the use of spreadsheets to solve management problems) common to shared courses of several undergraduate degree programs. The same team group is already experienced in the assessment of theoretical information systems topics using the b-learning platform. Therefore, this project works as an extension to previous experiences being the team aware of the additional difficulties due to the practical nature of the topics. This paper describes this project and presents two cycles of the action research methodology, used to conduct the research. The first cycle goal was to produce a database of questions. When it was implemented in order to be used with a pilot group of students, several problems were identified. Subsequently, the second cycle consisted in solving the identified problems preparing the database and all the players to a broader scope implementation. For each cycle, all the phases, its drawbacks and achievements are described. This paper suits all those who are or are planning to be in the process of shifting their assessment strategy from a traditional to one supported by an e-learning platform.
Resumo:
Background Information:The incorporation of distance learning activities by institutions of higher education is considered an important contribution to create new opportunities for teaching at both, initial and continuing training. In Medicine and Nursing, several papers illustrate the adaptation of technological components and teaching methods are prolific, however, when we look at the Pharmaceutical Education area, the examples are scarce. In that sense this project demonstrates the implementation and assessment of a B-Learning Strategy for Therapeutics using a “case based learning” approach. Setting: Academic Pharmacy Methods:This is an exploratory study involving 2nd year students of the Pharmacy Degree at the School of Allied Health Sciences of Oporto. The study population consists of 61 students, divided in groups of 3-4 elements. The b-learning model was implemented during a time period of 8 weeks. Results:A B-learning environment and digital learning objects were successfully created and implemented. Collaboration and assessment techniques were carefully developed to ensure the active participation and fair assessment of all students. Moodle records show a consistent activity of students during the assignments. E-portfolios were also developed using Wikispaces, which promoted reflective writing and clinical reasoning. Conclusions:Our exploratory study suggests that the “case based learning” method can be successfully combined with the technological components to create and maintain a feasible online learning environment for the teaching of therapeutics.