41 resultados para Video Processing
em Instituto Politécnico do Porto, Portugal
Resumo:
This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a ShimadzuUV–VIS 2550, which is in theworld the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995–2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional order systems.
Resumo:
One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO.
Resumo:
Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão
Resumo:
This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a Shimadzu UV–VIS 2550, which is in the world the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
The Casa da Música Foundation, responsible for the management of Casa da Música do Porto building, has the need to obtain statistical data related to the number of building’s visitors. This information is a valuable tool for the elaboration of periodical reports concerning the success of this cultural institution. For this reason it was necessary to develop a system capable of returning the number of visitors for a requested period of time. This represents a complex task due to the building’s unique architectural design, characterized by very large doors and halls, and the sudden large number of people that pass through them in moments preceding and proceeding the different activities occurring in the building. To achieve the technical solution for this challenge, several image processing methods, for people detection with still cameras, were first studied. The next step was the development of a real time algorithm, using OpenCV libraries and computer vision concepts,to count individuals with the desired accuracy. This algorithm includes the scientific and technical knowledge acquired in the study of the previous methods. The themes developed in this thesis comprise the fields of background maintenance, shadow and highlight detection, and blob detection and tracking. A graphical interface was also built, to help on the development, test and tunning of the proposed system, as a complement to the work. Furthermore, tests to the system were also performed, to certify the proposed techniques against a set of limited circumstances. The results obtained revealed that the algorithm was successfully applied to count the number of people in complex environments with reliable accuracy.
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.
Resumo:
An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos.
Resumo:
A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.
Resumo:
Background: Temporal lobe epilepsy (TLE) is a neurological disorder that directly affects cortical areas responsible for auditory processing. The resulting abnormalities can be assessed using event-related potentials (ERP), which have high temporal resolution. However, little is known about TLE in terms of dysfunction of early sensory memory encoding or possible correlations between EEGs, linguistic deficits, and seizures. Mismatch negativity (MMN) is an ERP component – elicited by introducing a deviant stimulus while the subject is attending to a repetitive behavioural task – which reflects pre-attentive sensory memory function and reflects neuronal auditory discrimination and perceptional accuracy. Hypothesis: We propose an MMN protocol for future clinical application and research based on the hypothesis that children with TLE may have abnormal MMN for speech and non-speech stimuli. The MMN can be elicited with a passive auditory oddball paradigm, and the abnormalities might be associated with the location and frequency of epileptic seizures. Significance: The suggested protocol might contribute to a better understanding of the neuropsychophysiological basis of MMN. We suggest that in TLE central sound representation may be decreased for speech and non-speech stimuli. Discussion: MMN arises from a difference to speech and non-speech stimuli across electrode sites. TLE in childhood might be a good model for studying topographic and functional auditory processing and its neurodevelopment, pointing to MMN as a possible clinical tool for prognosis, evaluation, follow-up, and rehabilitation for TLE.
Resumo:
TLE in infancy has been the subject of varied research. Topographical and structural evidence is coincident with the neuronal systems responsible for auditory processing of the highest specialization and complexity. Recent studies have been showing the need of a hemispheric asymmetry for an optimization in central auditory processing (CAP) and acquisition and learning of a language system. A new functional research paradigm is required to study mental processes that require methods of cognitive-sensory information analysis processed in very short periods of time (msec), such as the ERPs. Thus, in this article, we hypothesize that the TLE in infancy could be a good model for topographic and functional study of CAP and its development process, contributing to a better understanding of the learning difficulties that children with this neurological disorder have.
Resumo:
Alheiras are a traditional, smoked, fermented meat sausage, produced in Portugal, with an undeniable cultural and gastronomic legacy. In this study, we assessed the nutritional value of this product, as well as the influence of different types of thermal processing. Alheiras from Mirandela were submitted to six different procedures: microwave, skillet, oven, charcoal grill, electric fryer and electric grill. Protein, fat, carbohydrate, minerals, NaCl, and cholesterol contents, as well as fatty acid profile were evaluated. The results show that alheiras are not hypercaloric but an unbalanced foodstuff (high levels of proteins and lipids) and the type of processing has a major impact on their nutritional value. Charcoal grill is the healthiest option: less fat (12.5 g/100 g) and cholesterol (29.3 mg/100 g), corresponding to a lower caloric intake (231.8 kcal, less 13% than the raw ones). Inversely, fried alheiras presented the worst nutritional profile, with the highest levels of fat (18.1 g/100 g) and cholesterol (76.0 g/100 g).