2 resultados para Type I error
em Instituto Politécnico do Porto, Portugal
Resumo:
A methodology for the determination of the pesticide chlorfenvinphos by microwave-assisted solvent extraction and square-wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane-acetone (1:1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of -0.60 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0 x 10-8 mol l-1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g-1 level. The average recoveries and standard deviations for the global procedure reached byMASE-square-wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.
Resumo:
This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.