5 resultados para Streptavidin Monolayer

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O cancro é uma das principais causas de morte em todo o mundo. Entre as mulheres, o cancro da mama é o mais frequente. A deteção precoce do cancro é de extrema importância na medida em que pode aumentar as possibilidades de cura dos pacientes e contribuir para a diminuição da taxa de mortalidade desta doença. Um método que tem contribuído para a deteção precoce do cancro é a análise de biomarcadores. Biomarcadores associados ao cancro da mama, como o Recetor 2 do Fator de Crescimento Epidérmico Humano (HER2) e o Antigénio Carbohidratado 15-3 (CA 15-3), podem ser detetados através de dispositivos como os biossensores. Neste trabalho foram desenvolvidos dois imunossensores eletroquímicos para a análise de HER2 e CA 15-3. Para ambos os sensores foram utilizados, como transdutores, elétrodos serigrafados de carbono. A superfície destes transdutores foi nanoestruturada com nanopartículas de ouro. Foram realizados imunoensaios não-competitivos (do tipo sandwich) em ambos os imunossensores, cuja estratégia consistiu na (i) imobilização do respetivo anticorpo de captura na superfície nanoestruturada dos elétrodos, (ii) bloqueio da superfície com caseína, (iii) incubação com uma mistura do analito (HER2 ou CA 15-3) e o respetivo anticorpo de deteção biotinilado, (iv) adição de estreptavidina conjugada com fosfatase alcalina (S-AP; a AP foi utilizada como marcador enzimático), (v) adição de uma mistura do substrato enzimático (3-indoxil fosfato) e nitrato de prata, e (vi) deteção do sinal analítico através da redissolução anódica, por voltametria de varrimento linear, da prata depositada enzimaticamente. Com as condições experimentais otimizadas, foi estabelecida a curva de calibração para a análise de HER2 em soro, entre 15 e 100 ng/mL, obtendo-se um limite de deteção de 4,4 ng/mL. Para o CA 15-3 a curva de calibração (em solução aquosa) foi estabelecida entre 15 e 250 U/mL, obtendo-se um limite de deteção de 37,5 U/mL. Tendo em conta o valor limite (cutoff value) estabelecido para o HER2 (15 ng/mL) pode-se comprovar a possível utilidade do imunossensor desenvolvido para o diagnóstico precoce e descentralizado do cancro da mama. No caso do CA 15-3 serão necessários estudos adicionais para se poder avaliar a utilidade do imunossensor para o diagnóstico do cancro da mama.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis.