27 resultados para Stochastic covariate
em Instituto Politécnico do Porto, Portugal
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
Modern real-time systems, with a more flexible and adaptive nature, demand approaches for timeliness evaluation based on probabilistic measures of meeting deadlines. In this context, simulation can emerge as an adequate solution to understand and analyze the timing behaviour of actual systems. However, care must be taken with the obtained outputs under the penalty of obtaining results with lack of credibility. Particularly important is to consider that we are more interested in values from the tail of a probability distribution (near worst-case probabilities), instead of deriving confidence on mean values. We approach this subject by considering the random nature of simulation output data. We will start by discussing well known approaches for estimating distributions out of simulation output, and the confidence which can be applied to its mean values. This is the basis for a discussion on the applicability of such approaches to derive confidence on the tail of distributions, where the worst-case is expected to be.
Resumo:
Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.
Resumo:
The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
O objectivo deste trabalho é a análise da eficiência produtiva e dos efeitos da concentração sobre os custos bancários, tendo por base a indústria bancária portuguesa. O carácter multiproduto da empresa bancária sugere a necessidade de se adoptar formas multiproduto da função custo (tipo Fourier). Introduzimos variáveis de homogeneidade e de estrutura que permitem o recurso a formas funcionais uniproduto (Cobb-Douglas) à banca. A amostra corresponde a 22 bancos que operavam em Portugal entre 1995-2001, base não consolidada e dados em painel. Para o estudo da ineficiência recorreu-se ao modelo estocástico da curva fronteira (SFA), para as duas especificações. Na análise da concentração, introduziram-se variáveis binárias que pretendem captar os efeitos durante quatro anos após a concentração. Tanto no caso da SFA como no da concentração, os resultados encontrados são sensíveis à especificação funcional adoptada. Concluindo, o processo de concentração bancário parece justificar-se pela possibilidade da diminuição da ineficiência-X. This study addresses the productive efficiency and the effects of concentration over the banking costs, stressing its focus on the Portuguese banking market. The multiproduct character of the banking firm suggests the use of functional forms as Fourier. The introduction of variables of structure and of homogeneity allows the association of the banking activity (multiproduct) with a single product function (Cobb-Douglas type). The sample covers 22 banks which operated in Portugal from 1995-2001, non consolidated base with a panel data structure. The study about inefficiency is elaborated through the stochastic frontier model (SFA), for the two specifications selected. As a methodology to analyze the concentration, we introduced binary variables, which intend to catch the effects through four years after the concentration process. The results obtained, through SFA and concentration approach, are influenced by the kind of specifications selected. Summing up, the concentration process of the Banking Industry sounds to be justified by the possibility of the X-inefficiency.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística Orientada por: Prof. Dr. Pedro Godinho
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures. Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters. Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.
Resumo:
Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.
Resumo:
In this paper, we consider a Cournot competition between a nonprofit firm and a for-profit firm in a homogeneous goods market, with uncertain demand. Given an asymmetric tax schedule, we compute explicitly the Bayesian-Nash equilibrium. Furthermore, we analyze the effects of the tax rate and the degree of altruistic preference on market equilibrium outcomes.
Resumo:
A alta e crescente participação da energia eólica na matriz da produção traz grandes desafios aos operadores do sistema na gestão da rede e planeamento da produção. A incerteza associada à produção eólica condiciona os processos de escalonamento e despacho económico dos geradores térmicos, uma vez que a produção eólica efetiva pode ser muito diferente da produção prevista. O presente trabalho propõe duas metodologias de otimização do escalonamento de geradores térmicos baseadas em Programação Inteira Mista. Pretende-se encontrar soluções de escalonamento que minimizem as influências negativas da integração de energia eólica no sistema elétrico. Inicialmente o problema de escalonamento de geradores é formulado sem considerar a integração da energia eólica. Posteriormente foi considerada a penetração da energia eólica no sistema elétrico. No primeiro modelo proposto, o problema é formulado como um problema de otimização estocástico. Nesta formulação todos os cenários de produção eólica são levados em consideração no processo de otimização. No segundo modelo, o problema é formulado como um problema de otimização determinística. Nesta formulação, o escalonamento é feito para cada cenário de produção eólica e no fim determina-se a melhor solução por meio de indicadores de avaliação. Foram feitas simulações para diferentes níveis de reserva girante e os resultados obtidos mostraram que a alta participação da energia eólica na matriz da produção põe em causa a segurança e garantia de produção devido às características volátil e intermitente da produção eólica e para manter os mesmos níveis de segurança é preciso dispor no sistema de capacidade reserva girante suficiente capaz de compensar os erros de previsão.
Resumo:
No presente trabalho procura-se evidenciar algumas soluções para aplicação de simulação estocástica num contexto de gestão dos ativos, aplicado a um sistema de abastecimento de água, tirando partido da informação disponível sobre a manutenção que vem realizando, ao longo dos anos. Procura-se também descrever como estas metodologias podem ser aplicadas noutros casos, futuramente, beneficiando ainda da recolha de informação de colaboradores da empresa, com experiência no cargo e com elevado conhecimento do funcionamento das infraestruturas. A simulação estocástica é uma área cujas ferramentas podem dar uma preciosa ajuda no processo de tomada de decisão. Por outro lado, as organizações preocupam-se, cada vez mais, com o tema da gestão de ativos e com os custos a si associados, começando a investir mais tempo e dinheiro nessa matéria com o objetivo de delinearem estratégias para aumentar o período de vida útil dos seus ativos e otimizarem os seus investimentos de renovação. Nesse contexto, evidencia-se que um adequado plano de intervenções de manutenção e operação é uma boa metodologia, para garantir a redução de falhas no sistema de abastecimento de uma empresa desse setor, bem como garantir que as infraestruturas se encontram em condições de funcionamento. Contudo, esta abordagem tradicional não será suficiente para garantir as melhores práticas e os objetivos que se pretendem alcançar com uma gestão de ativos atual. O trabalho inclui, ainda, um estudo de caso com que se aplicaram as ferramentas estudadas a um caso real de um grupo de bombagem, de uma das Estações Elevatórias da empresa.
Resumo:
O presente trabalho, desenvolvido sob a orientação do Prof. Jaime Gabriel Silva, centra-se na procura e aplicação de metodologias de planeamento com apoio de ferramentas informáticas de análise de risco, que permitem realizar, em tempo útil, o cálculo dos prazos resultantes de inúmeras combinações possíveis associadas à incerteza das durações das atividades, recorrendo a modelos estocásticos. O trabalho aborda inicialmente o contexto da Gestão na Construção, com particular enfase na Gestão do Risco. Nessa fase inicial, fez-se também um pequeno inquérito a profissionais com diferentes níveis de responsabilidade organizacional e empresas do setor. A parte fundamental do trabalho, incide nos procedimentos a adotar na elaboração do planeamento de empreitadas. Nesta parte do trabalho, introduzem-se os conceitos da análise de risco com recurso a uma ferramenta informática de apoio, o @Risk, que permite a utilização do Método de Monte Carlo, para obtenção de resultados num contexto de uma tomada de decisão baseada no risco. Refira-se que houve vários contactos com o fornecedor do programa, que permitiram tirar partido de outro programa da Palisade, Evolver, direcionado para otimização matemática, podendo ser utilizado, por exemplo, na perspetiva da minimização dos custos, o que pode interessar pela relação destes com as opções adotadas na elaboração do planeamento de empreendimentos. Finalmente, toma-se um exemplo real do planeamento de uma empreitada em execução à data da realização deste trabalho, onde se aplicaram os conceitos desenvolvidos no trabalho, confrontando os resultados com o andamento da obra.