186 resultados para Speech enhancement systems
em Instituto Politécnico do Porto, Portugal
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
Speech interfaces for Assistive Technologies are not common and are usually replaced by others. The market they are targeting is not considered attractive and speech technologies are still not well spread. Industry still thinks they present some performance risks, especially Speech Recognition systems. As speech is the most elemental and natural way for communication, it has strong potential for enhancing inclusion and quality of life for broader groups of users with special needs, such as people with cerebral palsy and elderly staying at their homes. This work is a position paper in which the authors argue for the need to make speech become the basic interface in assistive technologies. Among the main arguments, we can state: speech is the easiest way to interact with machines; there is a growing market for embedded speech in assistive technologies, since the number of disabled and elderly people is expanding; speech technology is already mature to be used but needs adaptation to people with special needs; there is still a lot of R&D to be done in this area, especially when thinking about the Portuguese market. The main challenges are presented and future directions are proposed.
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
In this paper, a rule-based automatic syllabifier for Danish is described using the Maximal Onset Principle. Prior success rates of rule-based methods applied to Portuguese and Catalan syllabification modules were on the basis of this work. The system was implemented and tested using a very small set of rules. The results gave rise to 96.9% and 98.7% of word accuracy rate, contrary to our initial expectations, being Danish a language with a complex syllabic structure and thus difficult to be rule-driven. Comparison with data-driven syllabification system using artificial neural networks showed a higher accuracy rate of the former system.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results show an energy gain of up to 90% in the best case when compared to the state-of-the-art.
Resumo:
In this paper, a linguistically rule-based grapheme-to-phone (G2P) transcription algorithm is described for European Portuguese. A complete set of phonological and phonetic transcription rules regarding the European Portuguese standard variety is presented. This algorithm was implemented and tested by using online newspaper articles. The obtained experimental results gave rise to 98.80% of accuracy rate. Future developments in order to increase this value are foreseen. Our purpose with this work is to develop a module/ tool that can improve synthetic speech naturalness in European Portuguese. Other applications of this system can be expected like language teaching/learning. These results, together with our perspectives of future improvements, have proved the dramatic importance of linguistic knowledge on the development of Text-to-Speech systems (TTS).
Resumo:
In this paper, a module for homograph disambiguation in Portuguese Text-to-Speech (TTS) is proposed. This module works with a part-of-speech (POS) parser, used to disambiguate homographs that belong to different parts-of-speech, and a semantic analyzer, used to disambiguate homographs which belong to the same part-of-speech. The proposed algorithms are meant to solve a significant part of homograph ambiguity in European Portuguese (EP) (106 homograph pairs so far). This system is ready to be integrated in a Letter-to-Sound (LTS) converter. The algorithms were trained and tested with different corpora. The obtained experimental results gave rise to 97.8% of accuracy rate. This methodology is also valid for Brazilian Portuguese (BP), since 95 homographs pairs are exactly the same as in EP. A comparison with a probabilistic approach was also done and results were discussed.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Learning Management Systems (LMS) are used all over Higher Education Institutions (HEI) and the need to know and understand its adoption and usage arises. However, there is a lack of information about how LMSs are being used, which are the most adopted, whether there is a country adoption standard and which countries use more LMSs. A research team is developing a project that tries to fill this lack of information and provide the needed answers. With this purpose, on a first phase, it a survey was taken place. The results of this survey are presented in this paper. Another purpose of this paper is to disseminate the ongoing project.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129
Resumo:
We are working on the confluence of knowledge management, organizational memory and emergent knowledge with the lens of complex adaptive systems. In order to be fundamentally sustainable organizations search for an adaptive need for managing ambidexterity of day-to-day work and innovation. An organization is an entity of a systemic nature, composed of groups of people who interact to achieve common objectives, making it necessary to capture, store and share interactions knowledge with the organization, this knowledge can be generated in intra-organizational or inter-organizational level. The organizations have organizational memory of knowledge of supported on the Information technology and systems. Each organization, especially in times of uncertainty and radical changes, to meet the demands of the environment, needs timely and sized knowledge on the basis of tacit and explicit. This sizing is a learning process resulting from the interaction that emerges from the relationship between the tacit and explicit knowledge and which we are framing within an approach of Complex Adaptive Systems. The use of complex adaptive systems for building the emerging interdependent relationship, will produce emergent knowledge that will improve the organization unique developing.
Resumo:
Effective legislation and standards for the coordination procedures between consumers, producers and the system operator supports the advances in the technologies that lead to smart distribution systems. In short-term (ST) maintenance scheduling procedure, the energy producers in a distribution system access to the long-term (LT) outage plan that is released by the distribution system operator (DSO). The impact of this additional information on the decision-making procedure of producers in ST maintenance scheduling is studied in this paper. The final ST maintenance plan requires the approval of the DSO that has the responsibility to secure the network reliability and quality, and other players have to follow the finalized schedule. Maintenance scheduling in the producers’ layer and the coordination procedure between them and the DSO is modelled in this paper. The proposed method is applied to a 33-bus distribution system.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).