49 resultados para Self-determined motivation

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Educação Especial: Multideficiência e Problemas de Cognição

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communities of Practice are places which provide a sound basis for organizational learning, enabling knowledge creation and acquisition thus improving organizational performance, leveraging innovation and consequently increasing competitively. Virtual Communities of Practice (VCoP‟s) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. The ongoing case study, described here, aims to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of the VCoP‟s to which they belong. Based on a literature review, we have identified several factors that influence such processes; they will be used to analyse the results of interviews carried out with the leaders of VCoP‟s in four multinationals. As future work, a questionnaire will be developed and administered to the other members of these VCoP‟s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: Programas de self-management têm como objectivo habilitar os pacientes com estratégias necessárias para levar a cabo procedimentos específicos para a patologia. A última revisão sistemática sobre selfmanagament em DPOC foi realizada em 2007, concluindo-se que ainda não era possível fornecer dados claros e suficientes acerca de recomendações sobre a estrutura e conteúdo de programas de self-managament na DPOC. A presente revisão tem o intuito de complementar a análise da revisão anterior, numa tentativa de inferir a influência do ensino do self-management na DPOC. Objectivos: verificar a influência dos programas de self-management na DPOC, em diversos indicadores relacionados com o estado de saúde do paciente e na sua utilização dos serviços de saúde. Estratégia de busca: pesquisa efectuada nas bases de dados PubMed e Cochrane Collaboration (01/01/2007 – 31/08/2010). Palavras-chave: selfmanagement education, self-management program, COPD e pulmonary rehabilitation. Critérios de Selecção: estudos randomizados sobre programas de selfmanagement na DPOC. Extracção e Análise dos Dados: 2 investigadores realizaram, independentemente, a avaliação e extracção de dados de cada artigo. Resultados: foram considerados 4 estudos randomizados em selfmanagement na DPOC nos quais se verificaram benefícios destes programas em diversas variáveis: qualidade de vida a curto e médio prazo, utilização dos diferentes recursos de saúde, adesões a medicação de rotina, controle das exacerbações e diminuição da sintomatologia. Parece não ocorrer alteração na função pulmonar e no uso de medicação de emergência, sendo inconclusivo o seu efeito na capacidade de realização de exercício. Conclusões: programas de self-management aparentam ter impacto positivo na qualidade de vida, recurso a serviços de saúde, adesão à medicação, planos de acção e níveis de conhecimento da DPOC. Discrepâncias nos critérios de selecção das amostras utilizadas, períodos de seguimento desiguais, consistência das variáveis mensuradas, condicionam a informação disponibilizada sobre este assunto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os hábitos de actividade física (AF) podem-se alterar consideravelmente durante a gravidez. O sucesso das estratégias que visam promover a AF das gestantes depende do modelo motivacional implementado. Objectivo: Determinar se o Modelo Transteórico de Mudança de Comportamento (MTMC) utilizado no Projecto “Mães em Movimento” é eficaz na promoção de mudança de comportamentos nas grávidas no sentido de aumentar os níveis de AF. Metodologia: Foi realizado um estudo, experimental do tipo Intervenção Comunitária, numa amostra consecutiva constituída por 20 grávidas que faziam Preparação para a Parentalidade (PP) em dois Centros de Saúde. O grupo experimental, constituído por 10 grávidas, além da preparação, participou no projecto “Mães em Movimento” baseado no MTMC. O grupo de controlo seguiu o programa de PP. Os instrumentos utilizados para 1ª avaliação foram: o Questionário de Actividade Física para Gestantes, a Escala de Estados de Mudança de Comportamento para o Exercício, o Questionário de Auto-Eficácia, o Behavioural Regulation in Exercise Questionnaire-2 e um Questionário de Hábitos e Conhecimentos. Resultados: Após a implementação do projecto “Mães em Movimento” no grupo experimental, 100% das mulheres referiram praticar AF regular. O gasto energético semanal em actividades desportivas/exercício aumentou aproximadamente 4 vezes (p=0,002) desde a 1ª avaliação até à 2ª avaliação. Verificou-se uma tendência de deslocação dos estadios de mudança de comportamento inactivos para os activos (p=0,007) e a motivação intrínseca aumentou significativamente (p=0,018). Observou-se, também, um aumento dos conhecimentos relativos a diversas dimensões da AF na gravidez (p=0,002). Conclusão: Neste estudo, o MTMC revelou-se um modelo eficaz na promoção de hábitos de AF em grávidas, realçando que o sucesso da mudança de comportamento é influenciado pela motivação individual, pelo empowerment (transferência de conhecimentos e competências) e pelas oportunidades criadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A marcha é influenciada por um conjunto de factores que resultam da interacção e organização própria de sistemas neurais e mecânicos, entre os quais, da dinâmica músculo-esquelética, da modulação pelos centros nervosos superiores, pela modulação aferente e é, também, assumida como sendo controlada pelo Gerador de Padrão Central (GPC), que se define como um programa central baseado num circuito espinal geneticamente determinado, capaz de produzir um ritmo associado a cada marcha. Apresenta-se como objectivo deste trabalho abordar quais os modelos explicativos para o funcionamento do GPC e qual a evidência científica, que continua a ter muitas divergências.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.