22 resultados para Selective Catalytic-reduction
em Instituto Politécnico do Porto, Portugal
Resumo:
With the constant development of new antibiotics, selective pressure is a force to reckon when investigating antibiotic resistance. Although advantageous for medical treatments, it leads to increasing resistance. It is essential to use more potent and toxic antibiotics. Enzymes capable of hydrolyzing antibiotics are among the most common ways of resistance and TEM variants have been detected in several resistant isolates. Due to the rapid evolution of these variants, complex phenotypes have emerged and the need to understand their biological activity becomes crucial. To investigate the biochemical properties of TEM-180 and TEM-201 several computational methodologies have been used, allowing the comprehension of their structure and catalytic activity, which translates into their biological phenotype. In this work we intent to characterize the interface between these proteins and the several antibiotics used as ligands. We performed explicit solvent molecular dynamics (MD) simulations of these complexes and studied a variety of structural and energetic features. The interfacial residues show a distinct behavior when in complex with different antibiotics. Nevertheless, it was possible to identify some common Hot Spots among several complexes – Lys73, Tyr105 and Glu166. The structural changes that occur during the Molecular Dynamic (MD) simulation lead to the conclusion that these variants have an inherent capacity of adapting to the various antibiotics. This capability might be the reason why they can hydrolyze antibiotics that have not been described until now to be degraded by TEM variants. The results obtained with computational and experimental methodologies for the complex with Imipenem have shown that in order to this type of enzymes be able to acylate the antibiotics, they need to be capable to protect the ligand from water molecules.
Resumo:
A flow injection analysis (FIA) system comprising a tartrate- (TAT) selective electrode has been developed for determination of tartaric acid in wines. Several electrodes constructed for this purpose had a PVC membrane with a complex of quaternary ammonium and TAT as anion exchanger, a phenol derivative as additive, and a more or less polar mediator solvent. Characterization of the electrodes showed behavior was best for membranes with o-nitrophenyl octyl ether as solvent. On injection of 500 μL into a phosphate buffer carrier (pH = 3.1; ionic strength 10–2 mol/L) flowing at 3 mL/min, the slope was 58.06 ± 0.6 with a lower limit of linear range of 5.0 × 10–4 mol/L TAT and R2 = 0.9989. The interference of several species, e.g. chloride, bromide, iodide, nitrate, gallic acid, tannin, sucrose, glucose, fructose, acetate, and citrate, was evaluated in terms of potentiometric selectivity coefficients. The Hofmeister series was followed for inorganic species and the most interfering organic ion was citrate. When red and white wines were analyzed and the results compared with those from an independent method they were found to be accurate, with relative standard deviations below 5.0%.
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
A flow injection analysis (FIA) system comprising a cysteine selective electrode as detection system was developed for determination of this amino acid in pharmaceuticals. Several electrodes were constructed for this purpose, having PVC membranes with different ionic exchangers and mediator solvents. Better working characteristics were attained with membranes comprising o-nitrophenyl octyl ether as mediator solvent and a tetraphenylborate based ionic-sensor. Injection of 500 µL standard solutions into an ionic strength adjuster carrier (3x10-3 M) of barium chloride flowing at 2.4mL min-1, showed linearity ranges from 5.0x10-5 to 5.0x10-3 M, with slopes of 76.4±0.6mV decade-1 and R2>0.9935. Slope decreased significantly under the requirement of a pH adjustment, selected at 4.5. Interference of several compounds (sodium, potassium, magnesium, barium, glucose, fructose, and sucrose) was estimated by potentiometric selectivity coefficients and considered negligible. Analysis of real samples were performed and considered accurate, with a relative error to an independent method of +2.7%.
Resumo:
A flow injection analysis (FIA) system having a chlormequat selective electrode is proposed. Several electrodes with poly(vinyl chloride) based membranes were constructed for this purpose. Comparative characterization suggestedthe use of membrane with chlormequat tetraphenylborate and dibutylphthalate. On a single-line FIA set-up, operating with 1x10-2 mol L-1 ionic strength and 6.3 pH, calibration curves presented slopes of 53.6±0.4mV decade-1 within 5.0x10-6 and1.0x10-3 mol L-1, andsquaredcorrelation coefficients >0.9953. The detection limit was 2.2x10-6 mol L-1 and the repeatability equal to ±0.68mV (0.7%). A dual-channel FIA manifold was therefore constructed, enabling automatic attainment of previous ionic strength andpH conditions and thus eliminating sample preparation steps. Slopes of 45.5±0.2mV decade -1 along a concentration range of 8.0x10-6 to 1.0x10-3 mol L-1 with a repeatability ±0.4mV (0.69%) were obtained. Analyses of real samples were performed, and recovery gave results ranging from 96.6 to 101.1%.
Resumo:
Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power ˛ which is the order of the chemical reaction occurring at surface. We assumed α= 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.
Resumo:
The indiscriminate use of antibiotics in foodproducing animals has received increasing attention as a contributory factor in the international emergence of antibiotic- resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOXselective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9×10-5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1×10−5 and 5.5×10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01×10−7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
In this paper we consider a differentiated Stackelberg model, when the leader firm engages in an R&D process that gives an endogenous cost-reducing innovation. The aim is to study the licensing of the cost-reduction by a two-part tariff. By using comparative static analysis, we conclude that the degree of the differentiation of the goods plays an important role in the results. We also do a direct comparison between our model and Cournot duopoly model.
Resumo:
Pesticide exposure during brain development could represent an important risk factor for the onset of neurodegenerative diseases. Previous studies investigated the effect of permethrin (PERM) administered at 34 mg/kg, a dose close to the no observable adverse effect level (NOAEL) from post natal day (PND) 6 to PND 21 in rats. Despite the PERM dose did not elicited overt signs of toxicity (i.e. normal body weight gain curve), it was able to induce striatal neurodegeneration (dopamine and Nurr1 reduction, and lipid peroxidation increase). The present study was designed to characterize the cognitive deficits in the current animal model. When during late adulthood PERM treated rats were tested for spatial working memory performances in a T-maze-rewarded alternation task they took longer to choose for the correct arm in comparison to age matched controls. No differences between groups were found in anxiety-like state, locomotor activity, feeding behavior and spatial orientation task. Our findings showing a selective effect of PERM treatment on the T-maze task point to an involvement of frontal cortico-striatal circuitry rather than to a role for the hippocampus. The predominant disturbances concern the dopamine (DA) depletion in the striatum and, the serotonin (5-HT) and noradrenaline (NE) unbalance together with a hypometabolic state in the medial prefrontal cortex area. In the hippocampus, an increase of NE and a decrease of DA were observed in PERM treated rats as compared to controls. The concentration of the most representative marker for pyrethroid exposure (3-phenoxybenzoic acid) measured in the urine of rodents 12 h after the last treatment was 41.50 µ/L and it was completely eliminated after 96 h.
Resumo:
Evidence indicates that exposure to high levels of noise adversely affects human health, and these effects are dependent upon various factors. In hospitals, there are many sources of noise, and high levels exert an impact on patients and staff, increasing both recovery time and stress, respectively. The goal of this pilot study was to develop, implement and evaluate the effectiveness of a training program (TP) on noise reduction in a Neonatal Intensive Care Units (NICU) by comparing the noise levels before and after the implementation of the program. A total of 79 health professionals participated in the study. The measurements of sound pressure levels took into account the layout of the unit and location of the main sources of noise. General results indicated that LAeq levels before implementation of the training program were often excessive, ranging from 48.7 ± 2.94 dBA to 71.7 ± 4.74 dBA, exceeding international guidelines. Similarly following implementation of the training program noise levels remained unchanged (54.5 ± 0.49 dBA to 63.9 ± 4.37 dBA), despite a decrease in some locations. There was no significant difference before and after the implementation of TP. However a significant difference was found for Lp, Cpeak, before and after training staff, suggesting greater care by healthcare professionals performing their tasks. Even recognizing that a TP is quite important to change behaviors, this needs to be considered in a broader context to effectively control noise in the NICU.
Resumo:
Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.
Resumo:
Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~ 1 × 10− 4 mol L− 1, at pH 5, and a detection limitof ~ 8 × 10− 5 mol L− 1. Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.
Resumo:
Sulfamethoxazole (SMX) is among the antibiotics employed in aquaculture for prophylactic and therapeutic reasons. Environmental and food spread may be prevented by controlling its levels in several stages of fish farming. The present work proposes for this purpose new SMX selective electrodes for the potentiometric determination of this sulphonamide in water. The selective membranes were made of polyvinyl chloride (PVC) with tetraphenylporphyrin manganese (III) chloride or cyclodextrin-based acting as ionophores. 2-nitrophenyl octyl ether was employed as plasticizer and tetraoctylammonium, dimethyldioctadecylammonium bromide or potassium tetrakis (4-chlorophenyl) borate was used as anionic or cationic additive. The best analytical performance was reported for ISEs of tetraphenylporphyrin manganese (III) chloride with 50% mol of potassium tetrakis (4-chlorophenyl) borate compared to ionophore. Nersntian behaviour was observed from 4.0 × 10−5 to 1.0 × 10−2 mol/L (10.0 to 2500 µg/mL), and the limit of detection was 1.2 × 10−5 mol/L (3.0 µg/mL). In general, the electrodes displayed steady potentials in the pH range of 6 to 9. Emf equilibrium was reached before 15 s in all concentration levels. The electrodes revealed good discriminating ability in environmental samples. The analytical application to contaminated waters showed recoveries from 96 to 106%.