10 resultados para Schreuder, Hans T.: Sampling methods for multiresource forest inventory
em Instituto Politécnico do Porto, Portugal
Resumo:
O aumento da utilização do mercúrio, Hg, tanto para fins industriais como na aplicação de compostos mercuriais na agricultura, originaram um aumento significativo da contaminação ambiental, especialmente das águas e dos alimentos. Foi aprofundado o estudo sobre o mercúrio, nomeadamente as suas principais fontes de emissão, a sua toxicidade, os principais efeitos nos seres humanos, algumas medidas preventivas, os limites máximos que a legislação permite, que no caso das águas analisadas é de 0,001mg/L, os métodos analíticos para a sua determinação e alguns métodos de amostragem, tanto para o mercúrio em águas como em sedimentos. Em Almadén (Espanha), existe uma mina que pode ser considerada como uma das maiores anomalias geoqímica de mercúrio na Terra. Com este trabalho pretendeu-se perceber a possível existência de mercúrio nas águas termais ao longo da zona de falha Penacova-Régua-Verin e avaliar a existência de uma relação entre os níveis de mercúrio e o seu contexto geológico. Neste trabalho, foi desenvolvido um método simples para a determinação dos níveis de mercúrio em águas, utilizando a espectrometria de absorção atómica de fonte contínua de alta resolução acoplado à técnica de vapor frio. O objectivo deste trabalho foi avaliar os níveis de mercúrio existente em algumas águas engarrafadas e termais. Os limites de detecção da técnica utilizada foram 0,0595 μg/L e os de quantificação foram 0,2100 μg/L. Depois de analisadas as amostras verificou-se que os níveis de mercúrio encontrados nas águas eram inferiores ao limite de quantificação da técnica e por isso, não foi possível extrapolar qualquer relação entre os níveis de mercúrio e as alterações do fundo geológico. Como o limite de quantificação é inferior ao limite máximo permitido por lei, pode então dizer-se que todas as águas se encontram abaixo do limite máximo permitido.
Resumo:
One of the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions as it reduce the fuel mass availability. The impact of these management activities on soil physical and chemical properties varies according to the type of both soil and vegetation. Decisions in forest management plans are often based on the results obtained from soil-monitoring campaigns. Those campaigns are often man-labor intensive and expensive. In this paper we have successfully used the multivariate statistical technique Robust Principal Analysis Compounds (ROBPCA) to investigate on the sampling procedure effectiveness for two different methodologies, in order to reflect on the possibility of simplifying and reduce the sampling collection process and its auxiliary laboratory analysis work towards a cost-effective and competent forest soil characterization.
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
Among the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions in order to reduce the availability of fuel mass. However, the impact of these activities on soil physical and chemical properties varies according to the type of both soil and vegetation and is not fully understood. Therefore, soil monitoring campaigns are often used to measure these impacts. In this paper we have successfully used three statistical data treatments - the Kolmogorov-Smirnov test followed by the ANOVA and the Kruskall-Wallis tests – to investigate the variability among the soil pH, soil moisture, soil organic matter and soil iron variables for different monitoring times and sampling procedures.
Resumo:
Every year, particularly during the summer period, the Portuguese forests are devastated by forest fire that destroys their ecosystems. So in order to prevent these forest fires, public and private authorities frequently use methods for the reduction of combustible mass as the prescribed fire and the mechanical vegetation pruning. All of these methods of prevention of forest fires alter the vegetation layer and/or soil [1-2]. This work aimed the study of the variation of some chemical characteristics of soil that suffered prescribed fire. The studied an area was located in the Serra of Cabreira (Figure 1) with 54.6 ha. Twenty sampling points were randomly selected and samples were collected with a shovel before, just after the prescribed fire, and 125 and 196 days after that event. The parameters that were studied were: pH, soil moisture, organic matter and iron, magnesium and potassium total concentration. All the analysis followed International Standard Methodologies. This work allowed to conclude that: a) after the prescribed fire; i) the pH remained practically equal to the the initial value; ii) occurred a slight increase of the average of the organic matter contents and iron total contents; b) at the end of the sampling period compared to the initial values; i) the pH didn´t change significantly; ii) the average of the contents of organic matter decreased; and iii) the average of the total contents of Fe, Mg and K increased.
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
Portuguese northern forests are often and severely affected by wildfires during the summer season. Some preventive actions, such as prescribed (or controlled) burnings and clear-cut logging, are often used as a measure to reduce the occurrences of wildfires. In the particular case of Serra da Cabreira forest, due to extremely difficulties in operational field work, the prescribed (or controlled) burning technique is the the most common preventive action used to reduce the existing fuel load amount. This paper focuses on a Fuzzy Boolean Nets analysis of the changes in some forest soil properties, namely pH, moisture and organic matter content, after a controlled fire, and on the difficulties found during the sampling process and how they were overcome. The monitoring process was conducted during a three-month period in Anjos, Vieira do Minho, Portugal, an area located in a contact zone between a two-mica coarse-grained porphyritic granite and a biotite with plagioclase granite. The sampling sites were located in a spot dominated by quartzphyllite with quartz veins whose bedrock is partially altered and covered by slightly thick humus, which maintains low undergrowth vegetation.
Resumo:
In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.