8 resultados para Root-end filling endodontic materials

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Logística, vista como uma perspetiva integradora entre os parceiros de negócio, com objetivos comuns de proporcionar ao cliente mais-valias e aspetos diferenciadores perante os outros concorrentes, contribui em muito na manutenção das empresas na globalização atual, que se torna cada vez mais flexível. Através de uma boa gestão de processos críticos de negócio, boa localização dos materiais, sejam eles quais forem, produtos finais, matérias-primas ou produtos em vias de fabrico e através do transporte a logística cria utilidade temporal e diferenciadora. De facto, a logística poderá assumir um papel fundamental em proporcionar valor acrescentado ao disponibilizar, a tempo, os serviços que os clientes necessitam ou esperam. Enquadrando-se na temática de gestão dos armazéns, o presente projeto consistiu no estudo de operações de picking com a finalidade de otimização dos processos de picking no armazém do operador logístico AR – Serviços de Logística, localizado em Ribeirão, Vila Nova de Famalicão. O trabalho inicial passou pelo levantamento do funcionamento das operações do processo de picking na empresa e posteriormente confrontá-los com as tecnologias e procedimentos atuais no mercado. Com base nos resultados obtidos, foi possível definir e implementar métricas enquadradas nas finalidades estratégicas e operacionais do operador logístico. As soluções passaram também pela melhoria da aplicação de gestão de armazéns (WMS), reavaliação dos indicadores previamente estabelecidos e na aquisição de equipamentos para automatização das operações picking e localizações. Os registos e informações relacionadas com os módulos fulcrais são armazenados e tratados na base de dados de suporte à aplicação com contributo de melhoria contínua aos procedimentos logístico da empresa e sua relação com os stakeholders na estratégia global de negócio com o operador logístico. Finalmente, foi possível analisar os resultados obtidos em modo real em relação as estimativas calculadas e definidas na fase de implementação e desenvolvimento.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of end customer quality complaints with direct relationship with automotive components has presented negative trend at European level for the entire automotive industry. Thus, this research proposal is to concentrate efforts on the most important items of Pareto chart and understand the failure type and the mechanism involved, link and impact of the project and parameters on the process, ending it with the development of one of the company’s most desired tool, that hosted this project – European methodology of terminals defects classification, and listing real opportunities for improvement based on measurement and analysis of actual data. Through the development of terminals defects classification methodology, which is considered a valuable asset to the company, all the other companies of the YAZAKI’s group will be able to characterize terminals as brittle or ductile, in order to put in motion, more efficiently, all the other different existing internal procedures for the safeguarding of the components, improving manufacturing efficiency. Based on a brief observation, nothing can be said in absolute sense, concerning the failure causes. Base materials, project, handling during manufacture and storage, as well as the cold work performed by plastic deformation, all play an important role. However, it was expected that this failure has been due to a combination of factors, in detriment of the existence of a single cause. In order to acquire greater knowledge about this problem, unexplored by the company up to the date of commencement of this study, was conducted a thorough review of existing literature on the subject, real production sites were visited and, of course, the actual parts were tested in lab environment. To answer to many of the major issues raised throughout the investigation, were used extensively some theoretical concepts focused on the literature review, with a view to realizing the relationship existing between the different parameters concerned. Should here be stated that finding technical studies on copper and its alloys is really hard, not being given all the desirable information. This investigation has been performed as a YAZAKI Europe Limited Company project and as a Master Thesis for Instituto Superior de Engenharia do Porto, conducted during 9 months between 2012/2013.