8 resultados para Pharmaceutical formulations
em Instituto Politécnico do Porto, Portugal
Resumo:
Two analytical methods for the quality control of dihydrocodeine in commercial pharmaceutical formulations have been developed and compared with reference methods: a square wave voltammetric (SWV) method and a flow injection analysis system with electrochemical detection (FIA-EC). The electrochemical methods proposed were successfully applied to the determination of dihydrocodeine in pharmaceutical tablets and in oral solutions. These methods do not require any pretreatment of the samples, the formulation only being dissolved in a suitable electrolyte. Validation of the methods showed it to be precise, accurate and linear over the concentration range of analysis. The automatic procedure based on a flow injection analysis manifold allows a sampling rate of 115 determinations per hour.
Resumo:
A square wave voltammetric (SWV) method and a flow injection analysis systemwi th electrochemical detection (FIA-EC) using a glassy carbon electrode were evaluated for the determination of codeine in pharmaceutical preparations. The interference of several compounds, such as acetaminophen,guaiacol, parabens, ephedrine, acetylsalicylic acid and caffeine, that usually appear associated with codeine pharmaceutical preparations was studied. It was verified that these electroanalytical methods could not be used with acetaminophen present in the formulations and that with guaiacol, parabens or ephedrine present the use of the FIA-EC system was impracticable. A detection limit of 5 µmol L- 1 and a linear calibration range from 40 to 140 µmol L- 1 was obtained with the SWV method. For the flow injection analysis procedure a linear calibration range was obtained from 7 to 50 µmol L- 1 with a detection limit of 3 µmol L- 1 and the FIA-EC systemallowed a sampling rate of 115 samples per hour. The results obtained by the two methods, SWV and FIA-EC, were compared with those obtained using reference methods and demonstrated good agreement, with relative deviations lower than 4%.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.
Resumo:
The electrochemical behavior of citalopram was studied by square-wave and square-wave adsorptive-stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately -1.25V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0x10-7 and 2.0x10-6 mol L-1 with a limit of detection of 5x10-8 mol L-1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
The work presented describes the development and evaluation of two flow-injection analysis (FIA) systems for the automated determination of carbaryl in spiked natural waters and commercial formulations. Samples are injected directly into the system where they are subjected to alkaline hydrolysis thus forming 1-naphthol. This product is readily oxidised at a glassy carbon electrode. The electrochemical behaviour of 1-naphthol allows the development of an FIA system with an amperometric detector in which 1-naphthol determination, and thus measurement of carbaryl concentration, can be performed. Linear response over the range 1.0×10–7 to 1.0×10–5 mol L–1, with a sampling rate of 80 samples h–1, was recorded. The detection limit was 1.0×10–8 mol L–1. Another FIA manifold was constructed but this used a colorimetric detector. The methodology was based on the coupling of 1-naphthol with phenylhydrazine hydrochloride to produce a red complex which has maximum absorbance at 495 nm. The response was linear from 1.0×10–5 to 1.5×10–3 mol L–1 with a detection limit of 1.0×10–6 mol L–1. Sample-throughput was about 60 samples h–1. Validation of the results provided by the two FIA methodologies was performed by comparing them with results from a standard HPLC–UV technique. The relative deviation was <5%. Recovery trials were also carried out and the values obtained ranged from 97.0 to 102.0% for both methods. The repeatability (RSD, %) of 12 consecutive injections of one sample was 0.8% and 1.6% for the amperometric and colorimetric systems, respectively.
Resumo:
As formulações de cloreto de sódio 0,9%, são na sua grande maioria utilizadas com bastante frequência sobretudo na população pediátrica. Tanto os cuidadores como os próprios profissionais de saúde as reconhecem e avaliam como um componente essencial para os cuidados de saúde desta população. No entanto, o grave problema destas formulações reside no facto de muitos dos consumidores após a sua utilização apresentarem reacções adversas, que não são justificáveis se apenas da composição da formulação fizerem parte água purificada e cloreto de sódio. Assim deve ser tida em conta a composição de cada apresentação farmacêutica, a fim de se averiguar quanto à presença de conservantes potencialmente perigosos e para deste modo alertar os possíveis consumidores destes produtos. O principal objectivo deste estudo foi a análise e avaliação da rotulagem e folheto de instruções das formulações de cloreto de sódio 0,9% para aplicação tópica em pediatria, a fim de se averiguar a utilização de conservantes na sua formulação e por conseguinte a sua conformidade para comercialização. Com o auxílio de uma check-list, foram avaliadas 34 apresentações de venda livre de formulações de cloreto de sódio 0,9% para aplicação tópica, no período de Janeiro a Março de 2014. Das 34 apresentações farmacêuticas analisadas, apenas uma dasapresentações não se encontrava descrita como dispositivo médico, mas sim como produto cosmético. Contudo quanto à marcação CE de conformidade, esta encontrava-se devidamente aposta em 94% das apresentações. No que às indicações terapêuticas diz respeito e como seria expectável, na sua maioria estas apresentações destinam-se em 51% dos casos para utilização nasal e em 33% dos casos para utilização oftálmica, sendo o modo de apresentação em gotas (88%) o mais encontrado para comercialização. Quanto à utilização de conservantes, constatou-se uma grande omissão e alguma imprecisão quanto às informações contidas na rotulagem e/ou folheto de instruções das formulações analisadas, expondo assim os indivíduos mais susceptíveis e em especial a população pediátrica ao risco de reacções adversas e que por vezes podem ser fatais. Por outro lado também podem ocorrer complicações aquando do uso inadvertido destasformulações com conservantes, por portadores de lentes de contacto ou sem a devida esterilidade para utilização oftálmica. Assim apesar de o soro fisiológico não ser considerado um medicamento, mas sim um dispositivo médico, deve ser contudo utilizado com algumas precauções, sobretudo nesta população pediátrica e sempre que possível aconselhado por um profissional treinado e consciente da problemática que os conservantes usados nestas formulações podem causar quando utilizados indevidamente.