13 resultados para Perception Transduction

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μgmL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μgmL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel surface molecularly-imprinted (MI) material to detect myoglobin (Myo) using gold screen printed electrodes (SPE) was developed. The sensitive detection was carry out by introducing a carboxylic polyvinyl chloride (PVC-COOH) layer on gold SPE surface. Myo was attached to the surface of gold SPE/PVC-COOH and the vacant spaces around it were filled by polymerizing acrylamide and N,N-methylenebisacrylamide (cross-linker). This polymerization was initiated by ammonium persulphate. After removing the template, the obtained material was able to rebind Myo and discriminate it among other interfering species. Various characterization techniques including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirmed the surface modification. This sensor seemed a promising tool for screening Myo in point-of-care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes different kind of solid-contact graphite-based electrodes for the selective determination of sulphonamides (SPHs) in pharmaceuticals, biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative compounds of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made by employing it as either a sensing layer or an ionophore of PVC-based membranes and subsequent potentiometric transduction, a strategy never reported before. The corresponding non-imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipophilic additive was also studied. The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high dielectric constant plasticizer and 15 mg of ISG particles. The corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6 and 1.7 × 10−5 M, and limits of detection were 0.74 and 1.3 μg/mL for SDZ and for SMX, respectively. Good selectivity with log Kpot < −0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to + 3.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-contact sensors for the selective screening of sulfadiazine (SDZ) in aquaculture waters are reported. Sensor surfaces were made from PVC membranes doped with tetraphenylporphyrin-manganese(III) chloride, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin ionophores that were dispersed in plasticizer. Some membranes also presented a positive or a negatively charged additive. Phorphyrin-based sensors relied on a charged carrier mechanism. They exhibited a near-Nernstian response with slopes of 52 mV decade−1 and detection limits of 3.91 × 10−5 mol L−1. The addition of cationic lipophilic compounds to the membrane originated Nernstian behaviours, with slopes ranging 59.7–62.0 mV decade−1 and wider linear ranges. Cyclodextrin-based sensors acted as neutral carriers. In general, sensors with positively charged additives showed an improved potentiometric performance when compared to those without additive. Some SDZ selective membranes displayed higher slopes and extended linear concentration ranges with an increasing amount of additive (always <100% ionophore). The sensors were independent from the pH of test solutions within 2–7. The sensors displayed fast response, always <15 s. In general, a good discriminating ability was found in real sample environment. The sensors were successfully applied to the fast screening of SDZ in real waters samples from aquaculture fish farms. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in locus measurements of sulfadiazine or parent-drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μg mL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μg mL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mV/Δlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL−1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ± 0.7%), fast response, good sensitivity (47 mV/Δlog([ENR]/M), wide linear range (1.0 × 10−5–1.0 × 10−3 M), low detection limit (0.9 µg mL−1), and a stable baseline for a 5 × 10−2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indiscriminate use of antibiotics in food-producing animals has received increasing attention as a contributory factor in the international emergence of antibiotic-resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOX-selective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9 × 10−5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.