6 resultados para Pedestrian Navigation System
em Instituto Politécnico do Porto, Portugal
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.
Resumo:
This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
The goal of the work presented in this paper is to provide mobile platforms within our campus with a GPS based data service capable of supporting precise outdoor navigation. This can be achieved by providing campus-wide access to real time Differential GPS (DGPS) data. As a result, we designed and implemented a three-tier distributed system that provides Internet data links between remote DGPS sources and the campus and a campus-wide DGPS data dissemination service. The Internet data link service is a two-tier client/server where the server-side is connected to the DGPS station and the client-side is located at the campus. The campus-wide DGPS data provider disseminates the DGPS data received at the campus via the campus Intranet and via a wireless data link. The wireless broadcast is intended for portable receivers equipped with a DGPS wireless interface and the Intranet link is provided for receivers with a DGPS serial interface. The application is expected to provide adequate support for accurate outdoor campus navigation tasks.