15 resultados para Nuclear genes
em Instituto Politécnico do Porto, Portugal
Resumo:
The principal aim of this study was to investigate the possibility of transference to Escherichia coli of β-lactam resistance genes found in bacteria isolated from ready-to-eat (RTE) Portuguese traditional food. From previous screenings, 128 β-lactam resistant isolates (from different types of cheese and of delicatessen meats), largely from the Enterobacteriaceae family were selected and 31.3% of them proved to transfer resistance determinants in transconjugation assays. Multiplex PCR in donor and transconjugant isolates did not detect bla CTX, bla SHV and bla OXY, but bla TEM was present in 85% of them, while two new TEMs (TEM-179 and TEM-180) were identified in two isolates. The sequencing of these amplicons showed identity between donor and transconjugant genes indicating in vitro plasmid DNA transfer. These results suggest that if there is an exchange of genes in natural conditions, the consumption of RTE foods, particularly with high levels of Enterobacteriaceae, can contribute to the spread of antibiotic resistance.
Resumo:
Aims: This paper aims to address some of the main possible applications of actual Nuclear Medicine Imaging techniques and methodologies in the specific context of Sports Medicine, namely in two critical systems: musculoskeletal and cardiovascular. Discussion: At the musculoskeletal level, bone scintigraphy techniques proved to be a mean of diagnosis of functional orientation and high sensibility compared with other morphological imaging techniques in the detection and temporal evaluation of pathological situations, for instance allowing the acquisition of information of great relevance in athletes with stress fractures. On the other hand, infection/inflammation studies might be of an important added value to characterize specific situations, early diagnose of potential critical issues – so giving opportunity to precise, complete and fast solutions – while allowing the evaluation and eventual optimization of training programs. At cardiovascular system level, Nuclear Medicine had proved to be crucial in differential diagnosis between cardiac hypertrophy secondary to physical activity (the so called "athlete's heart") and hypertrophic cardiomyopathy, in the diagnosis and prognosis of changes in cardiac function in athletes, as well as in direct - and non-invasive - in vivo visualization of sympathetic cardiac innervation, something that seems to take more and more importance nowadays, namely in order to try to avoid sudden death episodes at intense physical effort. Also the clinical application of Positron Emission Tomography (PET) has becoming more and more widely recognized as promising. Conclusions: It has been concluded that Nuclear Medicine can become an important application in Sports Medicine. Its well established capabilities to early detection of processes involving functional properties allied to its high sensibility and the actual technical possibilities (namely those related with hybrid imaging, that allows to add information provided by high resolution morphological imaging techniques, such as CT and/or MRI) make it a powerful diagnostic tool, claiming to be used on an each day higher range of clinical applications related with all levels of sport activities. Since the improvements at equipment characteristics and detection levels allows the use of smaller and smaller doses, so minimizing radiation exposure it is believed by the authors that the increase of the use of NM tools in the Sports Medicine area should be considered.
Resumo:
Introduction: Image resizing is a normal feature incorporated into the Nuclear Medicine digital imaging. Upsampling is done by manufacturers to adequately fit more the acquired images on the display screen and it is applied when there is a need to increase - or decrease - the total number of pixels. This paper pretends to compare the “hqnx” and the “nxSaI” magnification algorithms with two interpolation algorithms – “nearest neighbor” and “bicubic interpolation” – in the image upsampling operations. Material and Methods: Three distinct Nuclear Medicine images were enlarged 2 and 4 times with the different digital image resizing algorithms (nearest neighbor, bicubic interpolation nxSaI and hqnx). To evaluate the pixel’s changes between the different output images, 3D whole image plot profiles and surface plots were used as an addition to the visual approach in the 4x upsampled images. Results: In the 2x enlarged images the visual differences were not so noteworthy. Although, it was clearly noticed that bicubic interpolation presented the best results. In the 4x enlarged images the differences were significant, with the bicubic interpolated images presenting the best results. Hqnx resized images presented better quality than 4xSaI and nearest neighbor interpolated images, however, its intense “halo effect” affects greatly the definition and boundaries of the image contents. Conclusion: The hqnx and the nxSaI algorithms were designed for images with clear edges and so its use in Nuclear Medicine images is obviously inadequate. Bicubic interpolation seems, from the algorithms studied, the most suitable and its each day wider applications seem to show it, being assumed as a multi-image type efficient algorithm.
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.