2 resultados para Multi-trait analysis
em Instituto Politécnico do Porto, Portugal
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.