95 resultados para Multi Kidney Exchange Problem KEP
em Instituto Politécnico do Porto, Portugal
Resumo:
In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
Resumo:
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Multi-agent architectures are well suited for complex inherently distributed problem solving domains. From the many challenging aspects that arise within this framework, a crucial one emerges: how to incorporate dynamic and conflicting agent beliefs? While the belief revision activity in a single agent scenario is concentrated on incorporating new information while preserving consistency, in a multi-agent system it also has to deal with possible conflicts between the agents perspectives. To provide an adequate framework, each agent, built as a combination of an assumption based belief revision system and a cooperation layer, was enriched with additional features: a distributed search control mechanism allowing dynamic context management, and a set of different distributed consistency methodologies. As a result, a Distributed Belief Revision Testbed (DiBeRT) was developed. This paper is a preliminary report presenting some of DiBeRT contributions: a concise representation of external beliefs; a simple and innovative methodology to achieve distributed context management; and a reduced inter-agent data exchange format.
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
Group decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made individually. In Group Decision Argumentation, there is a set of participants, with different profiles and expertise levels, that exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this paper, it is proposed a Multi-Agent simulator for the behaviour representation of group members in a decision making process. Agents behave depending on rational and emotional intelligence and use persuasive argumentation to convince and make alternative choices.
Resumo:
Este trabalho visa apresentar um enquadramento da realidade económica e industrial do sector transformador de granitos ornamentais em Portugal e fazer uma análise do processo de serragem, com engenhos multi-lâminas e granalha de aço, na medida em que este é o método de seccionamento de blocos de granito mais utilizado pelas grandes indústrias do sector. Tendo em conta a importância económica desta operação produtiva na indústria em causa, foi definido como fito deste projecto a análise estatística dos custos de produção; a definição de fórmulas de cálculo que permitam prever o custo médio de serragem; e o estudo de soluções economicamente viáveis e ambientalmente sustentáveis para o problema das lamas resultantes do expurgo dos engenhos. Para a persecução deste projecto foi realizada uma recolha de dados implementando rotinas de controlo e registo dos mesmos, em quadros de produção normalizados e de fácil preenchimento, pelos operadores destes equipamentos. Esta recolha de dados permitiu isolar, quantificar e formular os factores de rentabilização do processo de serragem selecionando, dentro da amostra de estudo obtida, um conjunto de serragens com características similares e com valores próximos dos valores da média estatística. Apartir dos dados destas serragens foram geradas curvas de tendência polinomial com as quais se analisaram as variações provocadas no custo médio de serragem, pelas variações do factor em estudo. A formulação dos factores de rentabilização e os dados estatísticos obtidos permitiram depois o desenvolvimento de fórmulas de cálculo do custo médio de serragem que establecem o custo de produção diferenciado em função das espessuras com, ou sem, a incorporação dos factores de rentabilização. Como consequência do projecto realizado obteve-se um conjunto de conclusões util, para o sector industrial em causa, que evidencia a importancia da Ocupação dos engenhos e rentabilização de um espaço confinado, da Resistência oferecida à serragem pelos granitos, e da Diferença de altura entre os blocos de uma mesma carga, nos custos de transformação.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.