12 resultados para Methadone maintenance
em Instituto Politécnico do Porto, Portugal
Resumo:
Effective legislation and standards for the coordination procedures between consumers, producers and the system operator supports the advances in the technologies that lead to smart distribution systems. In short-term (ST) maintenance scheduling procedure, the energy producers in a distribution system access to the long-term (LT) outage plan that is released by the distribution system operator (DSO). The impact of this additional information on the decision-making procedure of producers in ST maintenance scheduling is studied in this paper. The final ST maintenance plan requires the approval of the DSO that has the responsibility to secure the network reliability and quality, and other players have to follow the finalized schedule. Maintenance scheduling in the producers’ layer and the coordination procedure between them and the DSO is modelled in this paper. The proposed method is applied to a 33-bus distribution system.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
A evolução tecnológica, com particular incidência nas tecnologias de informação, e a necessidade de uma integração cada vez mais profunda do sector da manutenção na gestão estratégica global da empresa, contribuíram para o aparecimento dos sistemas de e-maintenance. Por outro lado, os conceitos associados à manutenção deverão estar cada vez mais associados à manutenção remota. Assim, o desenvolvimento de plataformas de e-maintenance, entendidas como a agregação de software e hardware e outras tecnologias integradas, permitiram implementar serviços, que foram determinantes para a evolução deste conceito. Nesta comunicação apresenta-se uma plataforma de e-maintenance aplicada a um sistema automatizado de pesagem de viaturas na indústria cimenteira. O sistema é baseado na monitorização constante da degradação dos componentes críticos que, através de um sistema de alertas, permite antecipar as falhas notificando, atempadamente, a equipe de operadores específicos. A aplicação foi desenvolvida na Framework SLV Cement da empresa Cachapuz. Possuindo vários módulos de gestão da manutenção esta plataforma permite definir e controlar todo o fluxo de informação.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
In the standard Schumpeterian-growth models only follower firms invest in R&D activities and larger economies grow faster. Since these results are counterfactual, this paper reveals that leader firms often support R&D activities and economic growth can be independent of the market size. In particular, the maintenance of R&D leadership increases with: (i) the technological-knowledge gap between leader and followers, since a firm-specific learning effect of accumulated technological knowledge from past R&D is considered, (ii) the leaders’ strategies that delay the next successful R&D supported by some follower firm, (iii) the market size, and (iv) the up-grade of each innovation.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
The objective of every wind energy producer is to reduce operational costs associated to the production as a way to increase profits. One other issue that must be looked carefully is the equipment maintenance. Increase the availability of wind turbines by reducing the downtime associated to failures is a good strategy to achieve the main goal of increase profits. As a way to help in the definition of the best maintenance strategies, condition monitoring systems (CMS) have an important role to play. Informatics tools to make the condition monitoring of the wind turbines were developed and are now being installed as a way to help producers reducing the operational costs. There are a lot of developed systems to do the monitoring of a wind turbine or the whole wind park, in this paper will be made an overview of the most important systems.
Resumo:
Dynamic and distributed environments are hard to model since they suffer from unexpected changes, incomplete knowledge, and conflicting perspectives and, thus, call for appropriate knowledge representation and reasoning (KRR) systems. Such KRR systems must handle sets of dynamic beliefs, be sensitive to communicated and perceived changes in the environment and, consequently, may have to drop current beliefs in face of new findings or disregard any new data that conflicts with stronger convictions held by the system. Not only do they need to represent and reason with beliefs, but also they must perform belief revision to maintain the overall consistency of the knowledge base. One way of developing such systems is to use reason maintenance systems (RMS). In this paper we provide an overview of the most representative types of RMS, which are also known as truth maintenance systems (TMS), which are computational instances of the foundations-based theory of belief revision. An RMS module works together with a problem solver. The latter feeds the RMS with assumptions (core beliefs) and conclusions (derived beliefs), which are accompanied by their respective foundations. The role of the RMS module is to store the beliefs, associate with each belief (core or derived belief) the corresponding set of supporting foundations and maintain the consistency of the overall reasoning by keeping, for each represented belief, the current supporting justifications. Two major approaches are used to reason maintenance: single-and multiple-context reasoning systems. Although in the single-context systems, each belief is associated to the beliefs that directly generated it—the justification-based TMS (JTMS) or the logic-based TMS (LTMS), in the multiple context counterparts, each belief is associated with the minimal set of assumptions from which it can be inferred—the assumption-based TMS (ATMS) or the multiple belief reasoner (MBR).
Resumo:
A manutenção é uma área extremamente importante, principalmente na indústria. Devidamente organizada, permitirá um fluxo produtivo devidamente planeado e executado, que permitirá a qualquer empresa manter o nível de facturação desejado e o prazo de entrega acordado com os clientes. De outra forma, poderá originar o caos. No entanto, os desafios de gestão da produção mais correntes, nomeadamente através do Lean Manufacturing, passam a exigir um pouco mais do que uma simples manutenção. Torna-se obrigatório fazer análises económicas que permitam averiguar quando cada equipamento passa a exigir custos de manutenção excessivos, os quais poderão obrigar a um recondicionamento mais acentuado do equipamento, o qual pode passar inclusivamente por uma melhoria da sua performance. Nestes casos, terá que existir uma “cumplicidade” entre a Direcção de Produção e a Manutenção, no sentido de averiguar o melhor momento para proceder a uma melhoria do equipamento, numa perspectiva de funcionamento global em linha de produção, adaptando-o à performance que será exigida ao conjunto. Neste domínio, o Projecto passa a prestar um serviço valiosíssimo à empresa, integrando-se no conjunto Produção + Manutenção, criando valor na intervenção, através do desenvolvimento de um trabalho que permite não só repor o estado natural da produção, mas sim promover uma melhoria sustentada da mesma. Este trabalho pretende reflectir e avaliar a relevância do Projecto neste tipo de operações, contribuindo de uma forma sistemática e sustentada para a melhoria contínua dos processos de fabrico. É apresentado um caso de estudo que pretende validar todo o desenvolvimento anteriormente realizado na matéria.