6 resultados para Memory-based
em Instituto Politécnico do Porto, Portugal
Resumo:
The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing realtime guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution Time (WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the WCET analysis a challenging problem in a typical COTS-based multicore system. Then, we propose and prove, a mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled on different cores.
Resumo:
The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.
Resumo:
Contention on the memory bus in COTS based multicore systems is becoming a major determining factor of the execution time of a task. Analyzing this extra execution time is non-trivial because (i) bus arbitration protocols in such systems are often undocumented and (ii) the times when the memory bus is requested to be used are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. We present a method for finding an upper bound on the extra execution time of a task due to contention on the memory bus in COTS based multicore systems. This method makes no assumptions on the bus arbitration protocol (other than assuming that it is work-conserving).
Resumo:
To increase the amount of logic available to the users in SRAM-based FPGAs, manufacturers are using nanometric technologies to boost logic density and reduce costs, making its use more attractive. However, these technological improvements also make FPGAs particularly vulnerable to configuration memory bit-flips caused by power fluctuations, strong electromagnetic fields and radiation. This issue is particularly sensitive because of the increasing amount of configuration memory cells needed to define their functionality. A short survey of the most recent publications is presented to support the options assumed during the definition of a framework for implementing circuits immune to bit-flips induction mechanisms in memory cells, based on a customized redundant infrastructure and on a detection-and-fix controller.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.