7 resultados para Memorial Day

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origins of the vast majority of the words we use in contemporary English go back as far as Old or Middle English. In contrast, alright and all right in their present-day application appear to be the result of a more recent evolution, as there is no evidence of their use, not even in the two-word form, in the published fiction before the 18th century. Furthermore, there are not in the research literature, at least to my knowledge, any previous linguistic studies on this specific subject matter. The present article is simply an attempt to describe the various processes of diachronic change that brought about the emergence of alright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.