21 resultados para Mapeamento censitário

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orientado por Dr.ª Paula Ramalho Almeida

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência multidisciplinar e multicultural.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sequente dissertação resulta do desenvolvimento de um sistema de navegação subaquático para um Remotely Operated Vehicle (ROV). A abordagem proposta consiste de um algoritmo em tempo real baseado no método de Mapeamento e Localização Simultâneo (SLAM) a partir de marcadores em ambientes marinhos não estruturados. SLAM introduz dois principais desafios: (i) reconhecimento dos marcadores provenientes dos dados raw do sensor, (ii) associação de dados. Na detecção dos marcadores foram aplicadas técnicas de visão artificial baseadas na extracção de pontos e linhas. Para testar o uso de features no visual SLAM em tempo real nas operações de inspecção subaquáticas foi desenvolvida uma plataforma modicada do RT-SLAM que integra a abordagem EKF SLAM. A plataforma é integrada em ROS framework e permite estimar a trajetória 3D em tempo real do ROV VideoRay Pro 3E até 30 fps. O sistema de navegação subaquático foi caracterizado num tanque instalado no Laboratório de Sistemas Autónomos através de um sistema stereo visual de ground truth. Os resultados obtidos permitem validar o sistema de navegação proposto para veículos subaquáticos. A trajetória adquirida pelo VideoRay em ambiente controlado é validada pelo sistema de ground truth. Dados para ambientes não estruturados, como um gasoduto, foram adquiridos e obtida respectiva trajetória realizada pelo robô. Os dados apresentados comprovam uma boa precisão e exatidão para a estimativa da posição.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com este trabalho pretendemos desenvolver um projeto de intervenção no âmbito do Mapeamento de Competências, a implementar na Amorim & Irmãos, SA, a Entidade Acolhedora do Projeto. O diagnóstico realizado à Função Recursos Humanos permitiu identificar como potencial de intervenção o Mapeamento de Competências Chave. As Competências Chave são fundamentais para a operacionalização da missão e visão das organizações. Nos contextos de atuação global das empresas prevalece a incerteza e a necessidade de constantes readaptações da estrutura organizativa para garantir o sucesso dos planos estratégicos do negócio. Neste contexto empresarial, os modelos de gestão das pessoas assentes na Avaliação e Gestão de Competências são uma resposta adequada aos ciclos frequentes de mudança organizacional. O Mapeamento de Competências é, neste quadro de atuação das empresas, fundamental para a necessária adequação das competências dos colaboradores à operacionalização do plano estratégico do negócio. Assim, optamos pela conceção de um projeto de intervenção para Mapeamento das Competências Chave focado nas chefias de uma unidade industrial produtora de rolhas de cortiça. A metodologia adotada para a implementação deste projeto parte dos elementos estratégicos da empresa: Fatores Críticos de Sucessos, Pontos Fortes e Pontos Fracos. Foram definidos dois âmbitos para a implementação de uma estratégia de mapeamento de competências de cima para baixo: (1) identificação das Competência Chave e (2) definição da Competências Chave. Na implementação deste projeto intervieram vários interlocutores: as chefias intermedias da Unidade Industrial de Lamas, o Diretor de Logística, o Diretor de Recursos Humanos e um Técnico de Recursos Humanos que, sob a gestão do autor do projeto, manifestaram ao longo de todo o processo o envolvimento e compromisso indispensáveis para a sua concretização. Os resultados da avaliação permitem concluir que o projeto planeado e implementado atingiu a finalidade proposta: ter validado, em novembro de 2015, o Portfólio das Competências Chave Transversais e as Competências Chave Específicas das chefias intermedias da Unidade Industrial de Lamas, necessárias para a sustentabilidade do negócio da Amorim & Irmãos, SA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Química. Ramo optimização energética na indústria química.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Geotécnica e Geoambiente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução Hoje em dia, o conceito de ontologia (Especificação explícita de uma conceptualização [Gruber, 1993]) é um conceito chave em sistemas baseados em conhecimento em geral e na Web Semântica em particular. Entretanto, os agentes de software nem sempre concordam com a mesma conceptualização, justificando assim a existência de diversas ontologias, mesmo que tratando o mesmo domínio de discurso. Para resolver/minimizar o problema de interoperabilidade entre estes agentes, o mapeamento de ontologias provou ser uma boa solução. O mapeamento de ontologias é o processo onde são especificadas relações semânticas entre entidades da ontologia origem e destino ao nível conceptual, e que por sua vez podem ser utilizados para transformar instâncias baseadas na ontologia origem em instâncias baseadas na ontologia destino. Motivação Num ambiente dinâmico como a Web Semântica, os agentes alteram não só os seus dados mas também a sua estrutura e semântica (ontologias). Este processo, denominado evolução de ontologias, pode ser definido como uma adaptação temporal da ontologia através de alterações que surgem no domínio ou nos objectivos da própria ontologia, e da gestão consistente dessas alterações [Stojanovic, 2004], podendo por vezes deixar o documento de mapeamento inconsistente. Em ambientes heterogéneos onde a interoperabilidade entre sistemas depende do documento de mapeamento, este deve reflectir as alterações efectuadas nas ontologias, existindo neste caso duas soluções: (i) gerar um novo documento de mapeamento (processo exigente em termos de tempo e recursos computacionais) ou (ii) adaptar o documento de mapeamento, corrigindo relações semânticas inválidas e criar novas relações se forem necessárias (processo menos existente em termos de tempo e recursos computacionais, mas muito dependente da informação sobre as alterações efectuadas). O principal objectivo deste trabalho é a análise, especificação e desenvolvimento do processo de evolução do documento de mapeamento de forma a reflectir as alterações efectuadas durante o processo de evolução de ontologias. Contexto Este trabalho foi desenvolvido no contexto do MAFRA Toolkit1. O MAFRA (MApping FRAmework) Toolkit é uma aplicação desenvolvida no GECAD2 que permite a especificação declarativa de relações semânticas entre entidades de uma ontologia origem e outra de destino, utilizando os seguintes componentes principais: Concept Bridge – Representa uma relação semântica entre um conceito de origem e um de destino; Property Bridge – Representa uma relação semântica entre uma ou mais propriedades de origem e uma ou mais propriedades de destino; Service – São aplicados às Semantic Bridges (Property e Concept Bridges) definindo como as instâncias origem devem ser transformadas em instâncias de destino. Estes conceitos estão especificados na ontologia SBO (Semantic Bridge Ontology) [Silva, 2004]. No contexto deste trabalho, um documento de mapeamento é uma instanciação do SBO, contendo relações semânticas entre entidades da ontologia de origem e da ontologia de destino. Processo de evolução do mapeamento O processo de evolução de mapeamento é o processo onde as entidades do documento de mapeamento são adaptadas, reflectindo eventuais alterações nas ontologias mapeadas, tentando o quanto possível preservar a semântica das relações semântica especificadas. Se as ontologias origem e/ou destino sofrerem alterações, algumas relações semânticas podem tornar-se inválidas, ou novas relações serão necessárias, sendo por isso este processo composto por dois sub-processos: (i) correcção de relações semânticas e (ii) processamento de novas entidades das ontologias. O processamento de novas entidades das ontologias requer a descoberta e cálculo de semelhanças entre entidades e a especificação de relações de acordo com a ontologia/linguagem SBO. Estas fases (“similarity measure” e “semantic bridging”) são implementadas no MAFRA Toolkit, sendo o processo (semi-) automático de mapeamento de ontologias descrito em [Silva, 2004].O processo de correcção de entidades SBO inválidas requer um bom conhecimento da ontologia/linguagem SBO, das suas entidades e relações, e de todas as suas restrições, i.e. da sua estrutura e semântica. Este procedimento consiste em (i) identificar as entidades SBO inválidas, (ii) a causa da sua invalidez e (iii) corrigi-las da melhor forma possível. Nesta fase foi utilizada informação vinda do processo de evolução das ontologias com o objectivo de melhorar a qualidade de todo o processo. Conclusões Para além do processo de evolução do mapeamento desenvolvido, um dos pontos mais importantes deste trabalho foi a aquisição de um conhecimento mais profundo sobre ontologias, processo de evolução de ontologias, mapeamento etc., expansão dos horizontes de conhecimento, adquirindo ainda mais a consciência da complexidade do problema em questão, o que permite antever e perspectivar novos desafios para o futuro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A navegação e a interpretação do meio envolvente por veículos autónomos em ambientes não estruturados continua a ser um grande desafio na actualidade. Sebastian Thrun, descreve em [Thr02], que o problema do mapeamento em sistemas robóticos é o da aquisição de um modelo espacial do meio envolvente do robô. Neste contexto, a integração de sistemas sensoriais em plataformas robóticas, que permitam a construção de mapas do mundo que as rodeia é de extrema importância. A informação recolhida desses dados pode ser interpretada, tendo aplicabilidade em tarefas de localização, navegação e manipulação de objectos. Até à bem pouco tempo, a generalidade dos sistemas robóticos que realizavam tarefas de mapeamento ou Simultaneous Localization And Mapping (SLAM), utilizavam dispositivos do tipo laser rangefinders e câmaras stereo. Estes equipamentos, para além de serem dispendiosos, fornecem apenas informação bidimensional, recolhidas através de cortes transversais 2D, no caso dos rangefinders. O paradigma deste tipo de tecnologia mudou consideravelmente, com o lançamento no mercado de câmaras RGB-D, como a desenvolvida pela PrimeSense TM e o subsequente lançamento da Kinect, pela Microsoft R para a Xbox 360 no final de 2010. A qualidade do sensor de profundidade, dada a natureza de baixo custo e a sua capacidade de aquisição de dados em tempo real, é incontornável, fazendo com que o sensor se tornasse instantaneamente popular entre pesquisadores e entusiastas. Este avanço tecnológico deu origem a várias ferramentas de desenvolvimento e interacção humana com este tipo de sensor, como por exemplo a Point Cloud Library [RC11] (PCL). Esta ferramenta tem como objectivo fornecer suporte para todos os blocos de construção comuns que uma aplicação 3D necessita, dando especial ênfase ao processamento de nuvens de pontos de n dimensões adquiridas a partir de câmaras RGB-D, bem como scanners laser, câmaras Time-of-Flight ou câmaras stereo. Neste contexto, é realizada nesta dissertação, a avaliação e comparação de alguns dos módulos e métodos constituintes da biblioteca PCL, para a resolução de problemas inerentes à construção e interpretação de mapas, em ambientes indoor não estruturados, utilizando os dados provenientes da Kinect. A partir desta avaliação, é proposta uma arquitectura de sistema que sistematiza o registo de nuvens de pontos, correspondentes a vistas parciais do mundo, num modelo global consistente. Os resultados da avaliação realizada à biblioteca PCL atestam a sua viabilidade, para a resolução dos problemas propostos. Prova da sua viabilidade, são os resultados práticos obtidos, da implementação da arquitectura de sistema proposta, que apresenta resultados de desempenho interessantes, como também boas perspectivas de integração deste tipo de conceitos e tecnologia em plataformas robóticas desenvolvidas no âmbito de projectos do Laboratório de Sistemas Autónomos (LSA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas. Orientada por Prof. Dra. Maria Rosário Moreira e Prof. Dr. Paulo Sousa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tese tem como objectivo principal a criação de um modelo equivalente eléctrico da rede de nervuras de algumas folhas vegetais e analisar o seu comportamento a estímulos eléctricos, analisando-se também a respectiva resposta em frequência. A motivação desta tese passa pela observação dos sistemas existentes na natureza. Neste caso, as folhas vegetais e analisar se são sistemas de ordem fraccionária ou não. Para a sua elaboração, fez-se uma breve abordagem à estrutura das plantas, sob o ponto de vista da botânica e elaborou-se um método de fotografia das amostras, mapeamento da rede de nervuras e medição dos segmentos que compõem essa mesma rede. A tese termina com um capítulo de resultados experimentais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantidade e variedade de conteúdos multimédia actualmente disponíveis cons- tituem um desafio para os utilizadores dado que o espaço de procura e escolha de fontes e conteúdos excede o tempo e a capacidade de processamento dos utilizado- res. Este problema da selecção, em função do perfil do utilizador, de informação em grandes conjuntos heterogéneos de dados é complexo e requer ferramentas específicas. Os Sistemas de Recomendação surgem neste contexto e são capazes de sugerir ao utilizador itens que se coadunam com os seus gostos, interesses ou necessidades, i.e., o seu perfil, recorrendo a metodologias de inteligência artificial. O principal objectivo desta tese é demonstrar que é possível recomendar em tempo útil conteúdos multimédia a partir do perfil pessoal e social do utilizador, recorrendo exclusivamente a fontes públicas e heterogéneas de dados. Neste sen- tido, concebeu-se e desenvolveu-se um Sistema de Recomendação de conteúdos multimédia baseado no conteúdo, i.e., nas características dos itens, no historial e preferências pessoais e nas interacções sociais do utilizador. Os conteúdos mul- timédia recomendados, i.e., os itens sugeridos ao utilizador, são provenientes da estação televisiva britânica, British Broadcasting Corporation (BBC), e estão classificados de acordo com as categorias dos programas da BBC. O perfil do utilizador é construído levando em conta o historial, o contexto, as preferências pessoais e as actividades sociais. O YouTube é a fonte do histo- rial pessoal utilizada, permitindo simular a principal fonte deste tipo de dados - a Set-Top Box (STB). O historial do utilizador é constituído pelo conjunto de vídeos YouTube e programas da BBC vistos pelo utilizador. O conteúdo dos vídeos do YouTube está classificado segundo as categorias de vídeo do próprio YouTube, sendo efectuado o mapeamento para as categorias dos programas da BBC. A informação social, que é proveniente das redes sociais Facebook e Twit- ter, é recolhida através da plataforma Beancounter. As actividades sociais do utilizador obtidas são filtradas para extrair os filmes e séries que são, por sua vez, enriquecidos semanticamente através do recurso a repositórios abertos de dados interligados. Neste caso, os filmes e séries são classificados através dos géneros da IMDb e, posteriormente, mapeados para as categorias de programas da BBC. Por último, a informação do contexto e das preferências explícitas, através da classificação dos itens recomendados, do utilizador são também contempladas. O sistema desenvolvido efectua recomendações em tempo real baseado nas actividades das redes sociais Facebook e Twitter, no historial de vídeos Youtube e de programas da BBC vistos e preferências explícitas. Foram realizados testes com cinco utilizadores e o tempo médio de resposta do sistema para criar o conjunto inicial de recomendações foi 30 s. As recomendações personalizadas são geradas e actualizadas mediante pedido expresso do utilizador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão