17 resultados para Mamdani and profits
em Instituto Politécnico do Porto, Portugal
Resumo:
Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade para obtenção do Grau de Mestre em Auditoria Orientada por: Doutora Alcina Dias
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
Metalearning is a subfield of machine learning with special pro-pensity for dynamic and complex environments, from which it is difficult to extract predictable knowledge. The field of study of this work is the electricity market, which due to the restructuring that recently took place, became an especially complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotia-tion entities. The proposed metalearner takes advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that pro-vides decision support to electricity markets’ participating players. Using the outputs of each different strategy as inputs, the metalearner creates its own output, considering each strategy with a different weight, depending on its individual quality of performance. The results of the proposed meth-od are studied and analyzed using MASCEM - a multi-agent electricity market simulator that models market players and simulates their operation in the market. This simulator provides the chance to test the metalearner in scenarios based on real electricity market´s data.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.
Resumo:
Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.
Resumo:
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças sob orientação de Professor Doutor Adalmiro Alvaro Malheiro de Castro Andrade Pereira
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
A função de escalonamento desempenha um papel importante nos sistemas de produção. Os sistemas de escalonamento têm como objetivo gerar um plano de escalonamento que permite gerir de uma forma eficiente um conjunto de tarefas que necessitam de ser executadas no mesmo período de tempo pelos mesmos recursos. Contudo, adaptação dinâmica e otimização é uma necessidade crítica em sistemas de escalonamento, uma vez que as organizações de produção têm uma natureza dinâmica. Nestas organizações ocorrem distúrbios nas condições requisitos de trabalho regularmente e de forma inesperada. Alguns exemplos destes distúrbios são: surgimento de uma nova tarefa, cancelamento de uma tarefa, alteração na data de entrega, entre outros. Estes eventos dinâmicos devem ser tidos em conta, uma vez que podem influenciar o plano criado, tornando-o ineficiente. Portanto, ambientes de produção necessitam de resposta imediata para estes eventos, usando um método de reescalonamento em tempo real, para minimizar o efeito destes eventos dinâmicos no sistema de produção. Deste modo, os sistemas de escalonamento devem de uma forma automática e inteligente, ser capazes de adaptar o plano de escalonamento que a organização está a seguir aos eventos inesperados em tempo real. Esta dissertação aborda o problema de incorporar novas tarefas num plano de escalonamento já existente. Deste modo, é proposta uma abordagem de otimização – Hiper-heurística baseada em Seleção Construtiva para Escalonamento Dinâmico- para lidar com eventos dinâmicos que podem ocorrer num ambiente de produção, a fim de manter o plano de escalonamento, o mais robusto possível. Esta abordagem é inspirada em computação evolutiva e hiper-heurísticas. Do estudo computacional realizado foi possível concluir que o uso da hiper-heurística de seleção construtiva pode ser vantajoso na resolução de problemas de otimização de adaptação dinâmica.
Resumo:
Phenolic acids are ubiquitous antioxidants accounting for approximately one third of the phenolic compounds in our diet. Their importance was supported by epidemiological studies that suggest an inverse relationship between dietary intake of phenolic antioxidants and the occurrence of diseases, such as cancer and neurodegenerative disorders. However, until now, most of natural antioxidants have limited therapeutic success a fact that could be related with their limited distribution throughout the body and with the inherent difficulties to attain the target sites. The development of phenolic antioxidants based on a hybrid concept and structurally based on natural hydroxybenzoic (gallic acid) and hydroxycinnamic (caffeic acid) scaffolds seems to be a suitable solution to surpass the mentioned drawbacks. Galloylecinnamic hybrids were synthesized and their antioxidant activity as well as partition coefficients and redox potentials evaluated. The structureepropertyeactivity relationship (SPAR) study revealed the existence of a correlation between the redox potentials and antioxidant activity. The galloylecinnamic acid hybrid stands out as the best antioxidant supplementing the effect of a blend of gallic acid plus caffeic acid endorsing the hypothesis that the whole is greater than the sum of the parts. In addition, some hybrid compounds possess an appropriate lipophilicity allowing their application as chain-breaking antioxidant in biomembranes or other type of lipidic systems. Their predicted ADME properties are also in accordance with the general requirements for drug-like compounds. Accordingly, these phenolic hybrids can be seen as potential antioxidants for tackling the oxidative status linked to the neurodegenerative, inflammatory or cancer processes.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Os serviços baseados em localização vieram dar um novo alento à criatividade dos programadores de aplicações móveis. A vulgarização de dispositivos com capacidades de localização integradas deu origem ao desenvolvimento de aplicações que gerem e apresentam informação baseada na posição do utilizador. Desde então, o mercado móvel tem assistido ao aparecimento de novas categorias de aplicações que tiram proveito desta capacidade. Entre elas, destaca-se a monitorização remota de dispositivos, que tem vindo a assumir uma importância crescente, tanto no sector particular como no sector empresarial. Esta dissertação começa por apresentar o estado da arte sobre os diferentes sistemas de posicionamento, categorizados pela sua eficácia em ambientes internos ou externos, assim como diferentes protocolos de comunicação em tempo quase-real. É também feita uma análise ao estado actual do mercado móvel. Actualmente o mercado possui diferentes plataformas móveis com características únicas que as fazem rivalizar entre si, com vista a expandirem a sua quota de mercado. É por isso elaborado um breve estudo sobre os sistemas operativos móveis mais relevantes da actualidade. É igualmente feita uma abordagem mais profunda à arquitectura da plataforma móvel da Apple - o iOS – que serviu de base ao desenvolvimento de uma solução optimizada para localização e monitorização de dispositivos móveis. A monitorização implica uma utilização intensiva de recursos energéticos e de largura de banda que os dispositivos móveis da actualidade não estão aptos a suportar. Dado o grande consumo energético do GPS face à precária autonomia destes dispositivos, é apresentado um estudo em que se expõem soluções que permitem gerir de forma optimizada a utilização do GPS. O elevado custo dos planos de dados facultados pelas operadoras móveis é também considerado, pelo que são exploradas soluções que visam minimizar a utilização de largura de banda. Deste trabalho, nasce a aplicação EyeGotcha, que para além de permitir localizar outros utilizadores de dispositivos móveis de forma optimizada, permite também monitorizar as suas acções baseando-se num conjunto de regras pré-definidas. Estas acções são reportadas às entidades monitoras, de modo automatizado e sob a forma de alertas. Visionando-se a comercialização da aplicação, é portanto apresentado um modelo de negócio que permite obter receitas capazes de cobrirem os custos de manutenção de serviços, aos quais o funcionamento da aplicação móvel está subjugado.