27 resultados para Industrial wastes

em Instituto Politécnico do Porto, Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Mestre Paulino Manuel Leite da Silva

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecto apresentado ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística Orientada por Prof. Doutor Gouveia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O desenvolvimento deste trabalho teve como objectivo a optimização de um sistema de climatização industrial, constituído por quatro centrais de climatização adiabáticas, que apresentam limitações de capacidade de arrefecimento, controlo e eficiência. Inicialmente foi necessária a pesquisa bibliográfica e recolha de informação relativa à indústria têxtil e ao processo de arrefecimento evaporativo. Numa fase posterior foram recolhidos e analisados os diversos dados essenciais à compreensão do binómio edifício/sistema de climatização, para a obtenção de possíveis hipóteses de optimização. Da fase de recolha de informações e dados, destaca-se, também, a realização de análises à qualidade do ar interior (QAI). As optimizações seleccionadas como passíveis de implementação, foram estudadas e analisadas com o auxílio do software de simulação energética dinâmica DesignBuilder e os resultados obtidos foram devidamente trabalhados e ajustados de modo a permitir uma assimilação amigável e de fácil interpretação das suas vantagens e desvantagens, tendo ainda sido objecto de estudo de viabilidade económica. A optimização proposta reflecte uma melhoria substancial das condições interiores ao nível da temperatura e humidade relativa, resultando, ainda assim, numa redução de consumos energéticos na ordem dos 23 % (490.337 kWh), isto é, uma poupança anual de 42.169 € aos custos de exploração e com um período de retorno de 1 ano e 11 meses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de projeto apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob a orientação do Mestre Paulino Manuel Leite da Silva