19 resultados para IONIC LIQUID ELECTROLYTES
em Instituto Politécnico do Porto, Portugal
Resumo:
In order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing l-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of l-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol–water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.
Resumo:
Novel ionic liquids containing ampicillin as an active pharmaceutical ingredient anion were prepared with good yields by using a new, efficient synthetic procedure based on the neutralization of a moderately basic ammonia solution of ampicillin with different organic cation hydroxides. The relevant physical and thermal properties of these novel ionic liquids based on ampicillin were also evaluated.
Resumo:
In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. Ionic liquids were used mainly as solvent in organic synthesis, but in recent years they are also used in analytical chemistry, separation chemistry and material science. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences. Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an anion with bacterial activity as β-lactam antibiotics and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with β-lactam antibiotics. After crystallization we obtained pure ILs and salts containing β-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their chemistry and microbiological characterization.
Resumo:
Valproic acid (2-propyl pentanoic acid) is a pharmaceutical drug used for treatment of epileptic seizures absence, tonic-clonic (grand mal), complex partial seizures, and mania in bipolar disorder [1]. Valproic acid is a slightly soluble in water and therefore as active pharmaceutical ingredient it is most commonly applied in form of sodium or magnesium valproate salt [1].However the list of adverse effects of these compounds is large and includes among others: tiredness, tremor, sedation and gastrointestinal disturbances [2]. Ionic liquids (ILs) are promising compounds as Active Pharmaceutical Ingredients (APIs)[3]. In this context, the combinations of the valproate anion with appropriate cation when ILs and salts are formed can significantly alter valproate physical, chemical and thermal properties.[4] This methodology can be used for drug modification (alteration of drug solubility in water, lipids, bioavailability, etc)[2] and therefore can eliminate some adverse effect of the drugs related to drug toxicity due for example to its solubility in water and lipids (interaction with intestines). Herein, we will discuss the development of ILs based on valproate anion (Figure 1) prepared according a recent optimized and sustainable acid-base neutralization method [4]. The organic cations such as cetylpyridinium, choline and imidazolium structures were selected based on their biocompatibility and recent applications in pharmacy [3]. All novel API-ILs based on valproate have been studied in terms of their physical, chemical (viscosity, density, solubility) and thermal (calorimetric studies) properties as well as their biological activity.
Resumo:
Ionic Liquids (ILs) are ionic compounds that possess melting temperature below 100ºC and they have been a topic of great interest since the mid-1990s due to their unique properties. The range of IL uses has been broadened, due to a significant increase in the variety of physical, chemical and biological ILs properties. They are now used as Active Pharmaceutical Ingredients (APIs) and recent interests are focused on their application as innovative solutions in new medical treatment and delivery options.1 In this work, our principal objective was the synthesis and investigation of physicochemical and medical properties of ionic liquids (ILs) and organic salts from ampicillin. This approach is of huge interest in pharmaceutical industry as cation and anion composition of ILs and organic salts can greatly alter their desired properties, namely the melting temperature and even synergistic effects can be obtained.2,3 For the synthesis of these compounds we used a recently developed method proposed by Ohno et al.4 for the preparation of quaternary ammonium and phosphonium hydroxides, that were neutralized by ampicillin. After purification we obtained pure ILs and salts in good yields. These ILs shows good antimicrobial and antifungal activities. As it is well known that some ionic liquids containing phosphonium and ammonium cation also shows anti-cancer activity1,5 we also decided to study these compounds against some cancer cell lines.
Resumo:
With the increase of bacterial resistance a large number of therapeutic strategies have been used to fight different kind of infections. In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. First ionic liquids were used mainly as solvent in organic synthesis, but now they are used in analytical chemistry, separation chemistry and material science among others. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an ion with bacterial activity as a beta-lactam antibiotic and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides. on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with beta-lactam antibiotics. After crystallization we obtained pure ILs and salts containing beta-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their characterization.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
A methodology based on microwave-assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4±8.8 to 112.0±1.1%, for all the compounds except for naphthalene (62.3±18.0%) and anthracene (67.3±5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110ºC). No clean-up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo( a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate-bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.
Resumo:
A multiresidue approach using microwave-assisted extraction and liquid chromatography with photodiode array detection was investigated for the determination of butylate, carbaryl, carbofuran, chlorpropham, ethiofencarb, linuron,metobromuron, and monolinuron in soils. The critical parameters of the developed methodology were studied. Method validation was performed by analyzing freshly and aged spiked soil samples. The recoveries and relative standard deviations reached using the optimized conditions were between 77.0 ± 0.46% and 120 ± 2.9% except for ethiofencarb (46.4 ± 4.4% to 105 ± 1.6%) and butylate (22.1 ± 7.6% to 49.2 ± 11%). Soil samples from five locations of Portugal were analysed.
Resumo:
An analytical multiresidue method for the simultaneous determination of seven pesticides in fresh vegetable samples, namely, courgette (Cucurbita pepo), cucumber (Cucumis sativus), lettuce (Lactuca sativa, Romaine and Iceberg varieties) and peppers (Capsicum sp.) is described. The procedure, based on microwave-assisted extraction (MAE) and analysis by liquid chromatography– photodiode array (LC–PDA) detection was applied to four carbamates (carbofuran, carbaryl, chlorpropham and EPTC) and three urea pesticides (monolinuron, metobromuron and linuron). Extraction solvent and the addition of anhydrous sodium sulphate to fresh vegetable homogenate before MAE were the parameters optimised for each commodity. Recovery studies were performed using spiked samples in the range 250–403 µgkg- 1 in each pesticide. The pesticide residues were extracted using 20mL acetonitrile at 60 ºC, for 10 min. Acceptable recoveries and RSDs were attained (overall average recovery of 77.2% and RSDs are lower than 11%). Detection limits ranged between 5.8 µgkg- 1 for carbaryl to 12.3 µgkg- 1 for carbofuran. The analytical protocol was applied for quality control of 41 fresh vegetable samples bought in Oporto Metropolitan Area (North Portugal). None of the samples contained any detectable amounts of the studied compounds.
Resumo:
An analytical method, based on microwave-assisted extraction and liquid chromatography with diode array detection, for the determination of six carbamate and three urea pesticides in fresh and processed tomato samples is described. Significant parameters affecting extraction efficiency were optimized. Under optimum microwave-assisted extraction conditions (20mL acetonitrile, for 10 minutes, at 60º C), pesticides were extracted with recoveries ranging from 57.6 to 102% (RSDs<7%). Quantification limits between 6.5 and 39.6 µg=kg were obtained. A total number of 28 different fresh tomato samples and 6 processed tomato products were analysed. Confirmation of suspicious samples was performed by LC-MS.
Resumo:
The industrial manufacturing of metallic objects results in a high level of foundry waste sands that may contain toxic compounds such as formaldehyde. The formaldehyde content of foundry waste sands was evaluated by liquid chromatography. Samples were collected during various steps of the industrial processes. Results showed that the phenolic alkaline process generated waste sands with higher formaldehyde content than the furanic process; the highest value was 7.6×10-3% (w/w). In this work, formaldehyde content decreased with time in all of the samples studied, revealing that most formaldehyde was released to the occupational environment.
Resumo:
Formaldehyde is a toxic component that is present in foundry resins. Its quantification is important to the characterisation of the resin (kind and degradation) as well as for the evaluation of free contaminants present in wastes generated by the foundry industry. The complexity of the matrices considered suggests the need for separative techniques. The method developed for the identification and quantification of formaldehyde in foundry resins is based on the determination of free carbonyl compounds by derivatization with 2,4-dinitrophenylhydrazine (DNPH), being adapted to the considered matrices using liquid chromatography (LC) with UV detection. Formaldehyde determinations in several foundry resins gave precise results. Mean recovery and R.S.D. were, respectively, >95 and 5%. Analyses by the hydroxylamine reference method gave comparable results. Results showed that hydroxylamine reference method is applicable just for a specific kind of resin, while the developed method has good performance for all studied resins.
Resumo:
This paper presents a fractional calculus perspective in the study of signals captured during the movement of a mechanical manipulator carrying a liquid container. In order to study the signals an experimental setup is implemented. The system acquires data from the sensors, in real time, and, in a second phase, processes them through an analysis package. The analysis package runs off-line and handles the recorded data. The results show that the Fourier spectrum of several signals presents a fractional behavior. The experimental study provides useful information that can assist in the design of a control system and the trajectory planning to be used in reducing or eliminating the effect of vibrations.
Resumo:
The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.