33 resultados para HBV DNA quantification
em Instituto Politécnico do Porto, Portugal
Resumo:
Deoxyribonucleic acid, or DNA, is the most fundamental aspect of life but present day scientific knowledge has merely scratched the surface of the problem posed by its decoding. While experimental methods provide insightful clues, the adoption of analysis tools supported by the formalism of mathematics will lead to a systematic and solid build-up of knowledge. This paper studies human DNA from the perspective of system dynamics. By associating entropy and the Fourier transform, several global properties of the code are revealed. The fractional order characteristics emerge as a natural consequence of the information content. These properties constitute a small piece of scientific knowledge that will support further efforts towards the final aim of establishing a comprehensive theory of the phenomena involved in life.
Resumo:
This paper analyzes DNA information using entropy and phase plane concepts. First, the DNA code is converted into a numerical format by means of histograms that capture DNA sequence length ranging from one up to ten bases. This strategy measures dynamical evolutions from 4 up to 410 signal states. The resulting histograms are analyzed using three distinct entropy formulations namely the Shannon, Rényie and Tsallis definitions. Charts of entropy versus sequence length are applied to a set of twenty four species, characterizing 486 chromosomes. The information is synthesized and visualized by adapting phase plane concepts leading to a categorical representation of chromosomes and species.
Resumo:
This paper addresses the DNA code analysis in the perspective of dynamics and fractional calculus. Several mathematical tools are selected to establish a quantitative method without distorting the alphabet represented by the sequence of DNA bases. The association of Gray code, Fourier transform and fractional calculus leads to a categorical representation of species and chromosomes.
Resumo:
This paper studies the human DNA in the perspective of signal processing. Six wavelets are tested for analyzing the information content of the human DNA. By adopting real Shannon wavelet several fundamental properties of the code are revealed. A quantitative comparison of the chromosomes and visualization through multidimensional and dendograms is developed.
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.
Resumo:
This paper studies the DNA code of eleven mammals from the perspective of fractional dynamics. The application of Fourier transform and power law trendlines leads to a categorical representation of species and chromosomes. The DNA information reveals long range memory characteristics.
Resumo:
This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.
Resumo:
Antibodies against gliadin are used to detect celiac disease (CD) in patients. An electrochemical immunosensor for the voltammetric detection of human anti-gliadin antibodies (AGA) IgA and AGA IgG in real serum samples is proposed. The transducer surface consists of screen-printed carbon electrodes modified with a carbon nanotube/gold nanoparticle hybrid system, which provides a very useful surface for the amplification of the immunological interactions. The immunosensing strategy is based on the immobilization of gliadin, the antigen for the autoantibodies of interest, onto the nanostructured surface. The antigen–antibody interaction is recorded using alkaline phosphatase labeled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions (3-IP/Ag+) was used as the substrate. The analytical signal is based on the anodic redissolution of the enzymatically generated silver by cyclic voltammetry. The electrochemical behavior of this immunosensor was carefully evaluated assessing aspects as sensitivity, non-specific binding and matrix effects, and repeatability and reproducibility. The results were supported with a commercial ELISA test.
Resumo:
Introduction: Paper and thin layer chromatography methods are frequently used in Classic Nuclear Medicine for the determination of radiochemical purity (RCP) on radiopharmaceutical preparations. An aliquot of the radiopharmaceutical to be tested is spotted at the origin of a chromatographic strip (stationary phase), which in turn is placed in a chromatographic chamber in order to separate and quantify radiochemical species present in the radiopharmaceutical preparation. There are several methods for the RCP measurement, based on the use of equipment as dose calibrators, well scintillation counters, radiochromatografic scanners and gamma cameras. The purpose of this study was to compare these quantification methods for the determination of RCP. Material and Methods: 99mTc-Tetrofosmin and 99mTc-HDP are the radiopharmaceuticals chosen to serve as the basis for this study. For the determination of RCP of 99mTc-Tetrofosmin we used ITLC-SG (2.5 x 10 cm) and 2-butanone (99mTc-tetrofosmin Rf = 0.55, 99mTcO4- Rf = 1.0, other labeled impurities 99mTc-RH RF = 0.0). For the determination of RCP of 99mTc-HDP, Whatman 31ET and acetone was used (99mTc-HDP Rf = 0.0, 99mTcO4- Rf = 1.0, other labeled impurities RF = 0.0). After the development of the solvent front, the strips were allowed to dry and then imaged on the gamma camera (256x256 matrix; zoom 2; LEHR parallel-hole collimator; 5-minute image) and on the radiochromatogram scanner. Then, strips were cut in Rf 0.8 in the case of 99mTc-tetrofosmin and Rf 0.5 in the case of 99mTc-HDP. The resultant pieces were smashed in an assay tube (to minimize the effect of counting geometry) and counted in the dose calibrator and in the well scintillation counter (during 1 minute). The RCP was calculated using the formula: % 99mTc-Complex = [(99mTc-Complex) / (Total amount of 99mTc-labeled species)] x 100. Statistical analysis was done using the test of hypotheses for the difference between means in independent samples. Results:The gamma camera based method demonstrated higher operator-dependency (especially concerning the drawing of the ROIs) and the measures obtained using the dose calibrator are very sensitive to the amount of activity spotted in the chromatographic strip, so the use of a minimum of 3.7 MBq activity is essential to minimize quantification errors. Radiochromatographic scanner and well scintillation counter showed concordant results and demonstrated the higher level of precision. Conclusions: Radiochromatographic scanners and well scintillation counters based methods demonstrate to be the most accurate and less operator-dependant methods.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
The deterioration of water quality by Cyanobacteria cause outbreaks and epidemics associated with harmful diseases in Humans and animals because of the toxins that they release. Microcystin-LR is one of the hepatotoxins most widely studied and the World Health Organization, recommend a maximum value of 1mgL 1 in drinking water. Highly specific recognition molecules, such as molecular imprinted polymers are developed to quantify microcystins in waters for human use and shown to be of great potential in the analysis of these kinds of samples. The obtained results were auspicious, the detection limit found, 1.5mgL 1, being of the same order of magnitude as the guideline limit recommended by the WHO. This technology is very promising because the sensors are stable and specific, and the technology is inexpensive and allows for rapid on-site monitoring.
Resumo:
Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA21) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH• radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADHmeasured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50nMof AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.