90 resultados para Greedy randomized adaptive search procedure
em Instituto Politécnico do Porto, Portugal
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.
Resumo:
In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Resumo:
The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The RPP is an NP-hard problem with significant real-life applications. This paper introduces an original approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an interesting Industrial Application, which focuses on the path optimization for component cutting operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy that involves cooperation and competition processes between population elements and integrates “social knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of instances and the results are compared with those gathered from other publications. MARP is also used in the context of various real-life applications.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
We are working on the confluence of knowledge management, organizational memory and emergent knowledge with the lens of complex adaptive systems. In order to be fundamentally sustainable organizations search for an adaptive need for managing ambidexterity of day-to-day work and innovation. An organization is an entity of a systemic nature, composed of groups of people who interact to achieve common objectives, making it necessary to capture, store and share interactions knowledge with the organization, this knowledge can be generated in intra-organizational or inter-organizational level. The organizations have organizational memory of knowledge of supported on the Information technology and systems. Each organization, especially in times of uncertainty and radical changes, to meet the demands of the environment, needs timely and sized knowledge on the basis of tacit and explicit. This sizing is a learning process resulting from the interaction that emerges from the relationship between the tacit and explicit knowledge and which we are framing within an approach of Complex Adaptive Systems. The use of complex adaptive systems for building the emerging interdependent relationship, will produce emergent knowledge that will improve the organization unique developing.
Resumo:
The aim of this paper is presenting the modules of the Adaptive Educational Hypermedia System PCMAT, responsible for the recommendation of learning objects. PCMAT is an online collaborative learning platform with a constructivist approach, which assesses the user’s knowledge and presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module and search and retrieval module choose the most adequate learning object, based on the user's characteristics and performance, and in this way contribute to the system’s adaptability.
Resumo:
Background Musicians are frequently affected by playing-related musculoskeletal disorders (PRMD). Common solutions used by Western medicine to treat musculoskeletal pain include rehabilitation programs and drugs, but their results are sometimes disappointing. Objective To study the effects of self-administered exercises based on Tuina techniques on the pain intensity caused by PRMD of professional orchestra musicians, using numeric visual scale (NVS). Design, setting, participants and interventions We performed a prospective, controlled, single-blinded, randomized study with musicians suffering from PRMD. Participating musicians were randomly distributed into the experimental (n = 39) and the control (n = 30) groups. After an individual diagnostic assessment, specific Tuina self-administered exercises were developed and taught to the participants. Musicians were instructed to repeat the exercises every day for 3 weeks. Main outcome measures Pain intensity was measured by NVS before the intervention and after 1, 3, 5, 10, 15 and 20 d of treatment. The procedure was the same for the control group, however the Tuina exercises were executed in points away from the commonly-used acupuncture points. Results In the treatment group, but not the control group, pain intensity was significantly reduced on days 1, 3, 5, 10, 15 and 20. Conclusion The results obtained are consistent with the hypothesis that self-administered exercises based on Tuina techniques could help professional musicians controlling the pain caused by PRMD. Although our results are very promising, further studies are needed employing a larger sample size and double blinding designs.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.
Resumo:
Introdução: Programas de self-management têm como objectivo habilitar os pacientes com estratégias necessárias para levar a cabo procedimentos específicos para a patologia. A última revisão sistemática sobre selfmanagament em DPOC foi realizada em 2007, concluindo-se que ainda não era possível fornecer dados claros e suficientes acerca de recomendações sobre a estrutura e conteúdo de programas de self-managament na DPOC. A presente revisão tem o intuito de complementar a análise da revisão anterior, numa tentativa de inferir a influência do ensino do self-management na DPOC. Objectivos: verificar a influência dos programas de self-management na DPOC, em diversos indicadores relacionados com o estado de saúde do paciente e na sua utilização dos serviços de saúde. Estratégia de busca: pesquisa efectuada nas bases de dados PubMed e Cochrane Collaboration (01/01/2007 – 31/08/2010). Palavras-chave: selfmanagement education, self-management program, COPD e pulmonary rehabilitation. Critérios de Selecção: estudos randomizados sobre programas de selfmanagement na DPOC. Extracção e Análise dos Dados: 2 investigadores realizaram, independentemente, a avaliação e extracção de dados de cada artigo. Resultados: foram considerados 4 estudos randomizados em selfmanagement na DPOC nos quais se verificaram benefícios destes programas em diversas variáveis: qualidade de vida a curto e médio prazo, utilização dos diferentes recursos de saúde, adesões a medicação de rotina, controle das exacerbações e diminuição da sintomatologia. Parece não ocorrer alteração na função pulmonar e no uso de medicação de emergência, sendo inconclusivo o seu efeito na capacidade de realização de exercício. Conclusões: programas de self-management aparentam ter impacto positivo na qualidade de vida, recurso a serviços de saúde, adesão à medicação, planos de acção e níveis de conhecimento da DPOC. Discrepâncias nos critérios de selecção das amostras utilizadas, períodos de seguimento desiguais, consistência das variáveis mensuradas, condicionam a informação disponibilizada sobre este assunto.
Resumo:
Background: A asma condiciona o dia-a-dia do indivíduo asmático do ponto de vista clínico e emocional demonstrando-se muitas vezes como um subtractivo da qualidade de vida (QV). Alguns estudos, com particular incidência nos últimos dez anos, para além de demonstrarem os benefícios da actividade física na componente clínica da doença, têm analisado o seu efeito na QV dos asmáticos. Objectivo: Analisar os efeitos da actividade física na QV de indivíduos com asma tendo por base uma revisão da literatura actual. Métodos: Foi conduzida uma pesquisa dos randomized controlled trials (RCT) compreendidos entre Janeiro de 2000 e Agosto de 2010, bem como as citações e as referências bibliográficas de cada estudo nas principais bases de dados de ciências da saúde (Academic Search Complete, DOAJ, Elsevier – Science Direct, Highwire Press, PubMed, Scielo Global, Scirus, Scopus, SpringerLink, Taylor & Francis e Wiley Interscience) com as palavras-chave: asthma, quality of life, QoL, physical activity, exercise, breathing, training e programme em todas as combinações possíveis. Os estudos foram analisados independentemente por dois revisores quanto aos critérios de inclusão e qualidade dos estudos. Resultados: Dos 1075 estudos identificados apenas onze foram incluídos. Destes, seis apresentaram um score 5/10, três 6/10 e dois 7/10 segundo a escala PEDro. Cinco destes estudos foram realizados em crianças entre os 7 e os 15 anos e os restantes em adultos. Os programas de intervenção dividiram-se em programas de treino aeróbio e programas de exercícios respiratórios. Todos programas de treino aeróbio apresentaram melhorias na QV demonstrando uma influência positiva do treino aeróbio na asma. Principais conclusões: Há uma tendência notória do benefício dos programas de treino aeróbio na QV dos indivíduos asmáticos. Os programas de exercícios respiratórios foram poucos e heterogéneos impossibilitando uma conclusão positiva quanto à sua recomendação para a melhoria da QV nesta patologia. Há uma grande necessidade de mais RCT com rigor metodológico.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.