35 resultados para Gradient-based approaches
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
The evolution of new technology and its increasing use, have for some years been making the existence of informal learning more and more transparent, especially among young and older adults in both Higher Education and workplace contexts. However, the nature of formal and non-formal, course-based, approaches to learning has made it hard to accommodate these informal processes satisfactorily, and although technology bring us near to the solution, it has not yet achieved. TRAILER project aims to address this problem by developing a tool for the management of competences and skills acquired through informal learning experiences, both from the perspective of the user and the institution or company. This paper describes the research and development main lines of this project.
Resumo:
No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.
Resumo:
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.
Resumo:
Proceedings of the International Conference on Computer Vision Theory and Applications, 361-365, 2013, Barcelona, Spain
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
Paper presented at the 8th European Conference on Knowledge Management, Barcelona, 6-7 Sep. 2008 URL: http://www.academic-conferences.org/eckm/eckm2007/eckm07-home.htm
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.