149 resultados para Fractional model
em Instituto Politécnico do Porto, Portugal
Resumo:
We study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. Memristor systems generalize the notion of electrical elements. Both concepts were shown to model important classes of phenomena. This paper goes a step further by embedding both tools in a generalization considering complex-order objects. Two complex operators leading to real-valued results are proposed. The proposed class of models generate a broad universe of elements. Several combinations of values are tested and the corresponding dynamical behavior is analyzed.
Resumo:
Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.
Resumo:
This paper studies fractional variable structure controllers. Two cases are considered namely, the sliding reference model and the control action, that are generalized from integer into fractional orders. The test bed consists in a mechanical manipulator and the effect of the fractional approach upon the system performance is evaluated. The results show that fractional dynamics, both in the switching surface and the control law are important design algorithms in variable structure controllers.
Resumo:
Não existe uma definição única de processo de memória de longo prazo. Esse processo é geralmente definido como uma série que possui um correlograma decaindo lentamente ou um espectro infinito de frequência zero. Também se refere que uma série com tal propriedade é caracterizada pela dependência a longo prazo e por não periódicos ciclos longos, ou que essa característica descreve a estrutura de correlação de uma série de longos desfasamentos ou que é convencionalmente expressa em termos do declínio da lei-potência da função auto-covariância. O interesse crescente da investigação internacional no aprofundamento do tema é justificado pela procura de um melhor entendimento da natureza dinâmica das séries temporais dos preços dos ativos financeiros. Em primeiro lugar, a falta de consistência entre os resultados reclama novos estudos e a utilização de várias metodologias complementares. Em segundo lugar, a confirmação de processos de memória longa tem implicações relevantes ao nível da (1) modelação teórica e econométrica (i.e., dos modelos martingale de preços e das regras técnicas de negociação), (2) dos testes estatísticos aos modelos de equilíbrio e avaliação, (3) das decisões ótimas de consumo / poupança e de portefólio e (4) da medição de eficiência e racionalidade. Em terceiro lugar, ainda permanecem questões científicas empíricas sobre a identificação do modelo geral teórico de mercado mais adequado para modelar a difusão das séries. Em quarto lugar, aos reguladores e gestores de risco importa saber se existem mercados persistentes e, por isso, ineficientes, que, portanto, possam produzir retornos anormais. O objetivo do trabalho de investigação da dissertação é duplo. Por um lado, pretende proporcionar conhecimento adicional para o debate da memória de longo prazo, debruçando-se sobre o comportamento das séries diárias de retornos dos principais índices acionistas da EURONEXT. Por outro lado, pretende contribuir para o aperfeiçoamento do capital asset pricing model CAPM, considerando uma medida de risco alternativa capaz de ultrapassar os constrangimentos da hipótese de mercado eficiente EMH na presença de séries financeiras com processos sem incrementos independentes e identicamente distribuídos (i.i.d.). O estudo empírico indica a possibilidade de utilização alternativa das obrigações do tesouro (OT’s) com maturidade de longo prazo no cálculo dos retornos do mercado, dado que o seu comportamento nos mercados de dívida soberana reflete a confiança dos investidores nas condições financeiras dos Estados e mede a forma como avaliam as respetiva economias com base no desempenho da generalidade dos seus ativos. Embora o modelo de difusão de preços definido pelo movimento Browniano geométrico gBm alegue proporcionar um bom ajustamento das séries temporais financeiras, os seus pressupostos de normalidade, estacionariedade e independência das inovações residuais são adulterados pelos dados empíricos analisados. Por isso, na procura de evidências sobre a propriedade de memória longa nos mercados recorre-se à rescaled-range analysis R/S e à detrended fluctuation analysis DFA, sob abordagem do movimento Browniano fracionário fBm, para estimar o expoente Hurst H em relação às séries de dados completas e para calcular o expoente Hurst “local” H t em janelas móveis. Complementarmente, são realizados testes estatísticos de hipóteses através do rescaled-range tests R/S , do modified rescaled-range test M - R/S e do fractional differencing test GPH. Em termos de uma conclusão única a partir de todos os métodos sobre a natureza da dependência para o mercado acionista em geral, os resultados empíricos são inconclusivos. Isso quer dizer que o grau de memória de longo prazo e, assim, qualquer classificação, depende de cada mercado particular. No entanto, os resultados gerais maioritariamente positivos suportam a presença de memória longa, sob a forma de persistência, nos retornos acionistas da Bélgica, Holanda e Portugal. Isto sugere que estes mercados estão mais sujeitos a maior previsibilidade (“efeito José”), mas também a tendências que podem ser inesperadamente interrompidas por descontinuidades (“efeito Noé”), e, por isso, tendem a ser mais arriscados para negociar. Apesar da evidência de dinâmica fractal ter suporte estatístico fraco, em sintonia com a maior parte dos estudos internacionais, refuta a hipótese de passeio aleatório com incrementos i.i.d., que é a base da EMH na sua forma fraca. Atendendo a isso, propõem-se contributos para aperfeiçoamento do CAPM, através da proposta de uma nova fractal capital market line FCML e de uma nova fractal security market line FSML. A nova proposta sugere que o elemento de risco (para o mercado e para um ativo) seja dado pelo expoente H de Hurst para desfasamentos de longo prazo dos retornos acionistas. O expoente H mede o grau de memória de longo prazo nos índices acionistas, quer quando as séries de retornos seguem um processo i.i.d. não correlacionado, descrito pelo gBm(em que H = 0,5 , confirmando- se a EMH e adequando-se o CAPM), quer quando seguem um processo com dependência estatística, descrito pelo fBm(em que H é diferente de 0,5, rejeitando-se a EMH e desadequando-se o CAPM). A vantagem da FCML e da FSML é que a medida de memória de longo prazo, definida por H, é a referência adequada para traduzir o risco em modelos que possam ser aplicados a séries de dados que sigam processos i.i.d. e processos com dependência não linear. Então, estas formulações contemplam a EMH como um caso particular possível.
Resumo:
Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.
Resumo:
This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
This paper studies the application of fractional algorithms in the control of a quad-rotor rotorcraft. The development of a flight simulator provide the evaluation of the controller algorithm. Several basic maneuvers are investigated, namely the elevation and the position control.
Resumo:
Locomotion has been a major research issue in the last few years. Many models for the locomotion rhythms of quadrupeds, hexapods, bipeds and other animals have been proposed. This study has also been extended to the control of rhythmic movements of adaptive legged robots. In this paper, we consider a fractional version of a central pattern generator (CPG) model for locomotion in bipeds. A fractional derivative D α f(x), with α non-integer, is a generalization of the concept of an integer derivative, where α=1. The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a network of four coupled identical oscillators which has dihedral symmetry. We study parameter regions where periodic solutions, identified with legs’ rhythms in bipeds, occur, for 0<α≤1. We find that the amplitude and the period of the periodic solutions, identified with biped rhythms, increase as α varies from near 0 to values close to unity.