3 resultados para Foundry

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two chromatographic methods, gas chromatography with flow ionization detection (GC–FID) and liquid chromatography with ultraviolet detection (LC–UV), were used to determine furfuryl alcohol in several kinds of foundry resins, after application of an optimised extraction procedure. The GC method developed gave feasibility that did not depend on resin kind. Analysis by LC was suitable just for furanic resins. The presence of interference in the phenolic resins did not allow an appropriate quantification by LC. Both methods gave accurate and precise results. Recoveries were >94%; relative standard deviations were ≤7 and ≤0.3%, respectively for GC and LC methods. Good relative deviations between the two methods were found (≤3%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde is a toxic component that is present in foundry resins. Its quantification is important to the characterisation of the resin (kind and degradation) as well as for the evaluation of free contaminants present in wastes generated by the foundry industry. The complexity of the matrices considered suggests the need for separative techniques. The method developed for the identification and quantification of formaldehyde in foundry resins is based on the determination of free carbonyl compounds by derivatization with 2,4-dinitrophenylhydrazine (DNPH), being adapted to the considered matrices using liquid chromatography (LC) with UV detection. Formaldehyde determinations in several foundry resins gave precise results. Mean recovery and R.S.D. were, respectively, >95 and 5%. Analyses by the hydroxylamine reference method gave comparable results. Results showed that hydroxylamine reference method is applicable just for a specific kind of resin, while the developed method has good performance for all studied resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenol is a toxic compound present in a wide variety of foundry resins. Its quantification is important for the characterization of the resins as well as for the evaluation of free contaminants present in foundry wastes. Two chromatographic methods, liquid chromatography with ultraviolet detection (LC-UV) and gas chromatography with flame ionization detection (GC-FID), for the analysis of free phenol in several foundry resins, after a simple extraction procedure (30 min), were developed. Both chromatographic methods were suitable for the determination of phenol in the studied furanic and phenolic resins, showing good selectivity, accuracy (recovery 99–100%; relative deviations <5%), and precision (coefficients of variation <6%). The used ASTM reference method was only found to be useful in the analysis of phenolic resins, while the LC and GC methods were applicable for all the studied resins. The developed methods reduce the time of analysis from 3.5 hours to about 30 min and can readily be used in routine quality control laboratories.